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Abstract

Reinforcement Learning (RL) is a promising approach for routing in highly dynamic
environments such as Tactical Networks (TNs). However, the use of RL in TNs exposes
a new vulnerability in the form of adversarial attacks, which is critical considering the
high security requirements in military settings. To address this issue, we investigate the
effectiveness of defensive methods that modify RL algorithms to enhance the robustness
of trained agents against adversarial attacks. We compare a suite of such methods and
evaluate their advantages and disadvantages in terms of robustness, training cost, and
ease of implementation. Hence, our findings provide guidance for future researchers to
develop Reinforcement Learning (RL) algorithms, which can fulfill the safety and security
requirements for field deployment.
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1 Introduction

Mobile communication devices such as mobile phones have enjoyed widespread adoption
throughout society. Most of these devices rely on telecommunication towers or stationary
routers. However, this necessary infrastructure does not exist everywhere nor is dependency
upon static base stations desirable for users. Mobile Adhoc Networks (MANETs) promise
a solution to this problem by offering a network consisting of multiple mobile nodes, each
node acting as both sender and receiver. Yet, these dynamic conditions offered by MANETs
also make effective routing extremely difficult. Not every node is capable of reaching all
other nodes and ever-changing network conditions as well as node disconnections require
a constant reevaluation of network paths. The problem is even more apparent for Tactical
Networks (TNs) which utilize the capabilities of MANETs in a military context.

Therefore, TNs offer a challenging, yet also highly demanding, environment. Employed
to connect various military assets and personnel, TNs need to be highly secure and reliable
even though the networks operate in high-risk situations and can consist of many heteroge-
neous radio links connecting dynamically changing nodes. The integration of TNs into other
communication systems (e.g. radio, satellite, vehicles, laptops, etc.) enables coverage of vast
areas and complex organizational hierarchies vital in military operations such as disaster re-
lief or crisis management. To ensure stability, the TN relies on each node to operate securely
and reliably with known uncertainties.

Times of rising world tension highlight the need for new TN solutions and to further this
cause research has begun to investigate the usage of machine learning to solve these prob-
lems. Traditional routing algorithms struggle to adapt to the dynamic environment of TNs
with sufficient speed. This motivates attempts to utilize Reinforcement Learning (RL). RL
may be uniquely suited to this problem, having proven itself invaluable in similar highly dy-
namic circumstances such as automated driving or robot control. Such a solution would even
be applicable in a civilian context due to the increasing use of MANETs.

This motivated us to to develop experiments simulating TNs. We devised metrics for net-
work performance leading to the formulation of an optimal control problem which can be
solved by an RL agent [1–3]. This RL agent regulates network traffic by selecting the next
node to which each IP datagram is forwarded. However, the same investigation [3] also
found the agent to be vulnerable to adversarial attacks, enabling an adversary to manipulate
the network behaviour.

While adversarial attacks are known to be effective against RL agents ever since 2017 [4],
adversarial attacks had never before been considered in the context of TNs. Via attacks on
the state space of the RL agent the authors showed that it is possible to lead the agent to
faulty routing decisions, resulting in network delays and package loss [3]. If left unchecked,
this new attack vector compromises the security and the reliability of the TN and has to be
mitigated before such an approach could be employed in practice.

In response to this new threat, this thesis explores defensive techniques to safeguard the
RL algorithm in TNs. We investigate a selection of defensive techniques against adversarial
attacks by using the RL model of Loevenich et al. [3] and evaluating the effect of adversarial
attacks against a defended version of the same model. Among the techniques we investi-
gate are methods for robust learning [5], adversarial training [6, 7] and Policy Distillation
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(PD) [8], allowing us to cover many different approaches promising resistance against adver-
sarial attacks. The goal is to find a defensive technique capable of making adversarial attacks
ineffective while raising the robustness of the RL agent to increase the reliability of the entire
TN.

We discern the advantages and disadvantages of each defense method and identify the
defense most well suited for our TN environment. Hence, we enable the future development
of more reliable and secure RL agents inTNs and we indicate how future research might
further improve these defenses.

In the following, Section 2 describes the current literature around RL solutions in TNs and
adversarial attacks against RL. The necessary background information needed to contextu-
alise this thesis is given in Section 3. Thereafter, Section 4 defines the problem statement for
defending RL algorithms in TNs against adversarial attacks and approaches towards achieving
this goal are provided in Section 5, with the respective results being discussed in Section 6.
Lastly, Section 7 will summarize our contributions towards a new generation of secure and
smart TNs and outline further avenues of research.

2 Related Works

The following discusses the research works upon which the rest of this thesis is based on.
Further, it also includes context regarding the research of both adversarial attacks and RL
solutions for TNs.

2.1 Attacks on Reinforcement Learning

Originating in the domain of image recognition [9], adversarial attacks have long since been
known to be effective. Yet, the impact of adversarial attacks on RL did not become apparent
until the experiments of Huang et al. [4] in 2017. Their results clearly showed the efficacy
of adversarial attacks against RL algorithms. This subject has since been an expansive and
active area of research, leading to increasingly more complex and more effective attacks. As
a response, defenses to safeguard RL agents against such attacks have also been formulated.
Many of these defenses also provide the added benefit of increasing the robustness of the RL
agent, thus also increasing the ability of the agent to generalize.

A comprehensive review of both attacks and defenses for RL agents is given by Ilahi
et al. [10]. In this work the authors propose a taxonomy for existing adversarial attacks
and countermeasures, classifying attacks by evaluating the adversary’s objective, knowledge,
specificity and frequency. Further, they consider which space of the RL victim is attacked.
Defenses are also categorized with respect to the most commonly used approaches.

Among defeneses, Vinitsky et al [7] propose Robustness via Adversary Populations (RAP).
Due to a single adversary during training yielding insufficient results, they intend to increase
victim robustness by having the target RL agent learn alongside a population of adversarial
RL agents instead. During collection of trajectories, these adversarial agents learned online
alongside the victim and try to sabotage the return by targeting the action-space of the victim.
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Through this model robustness and generalization is increased as the victim learns to resist a
multitude of different attack strategies.

Using their noise based adversarial attack Pattanaik et al. [6] also suggest a defensive
method for robust training. During training they apply a so-called gradient attack, sampling
noise in gradient direction to perturb the state.

Zhang et al. [5] also increase agent robustness during online adversarial training but in-
stead of employing multiple adversarial agents targeting the action-space they choose to
employ only a single adversarial agent targeting the observed state-space of the victim. For
this they also use the conceptual framework of an State-Adversarial Markov Decision Process
(SA-MDP) previously outlined by the same authors in [11]. The proposed Alternating Train-
ing with Learned Adversaries (ATLA) algorithm may also be utilized to allow the victim or the
adversary to train for more steps than the other after new trajectories are collected, making
precise control of the learning speed of both agent and adversary possible.

Another defensive approach is PD as demonstrated by Qu et al. [8]. They train a new
neural network to replicate the behavior of the original RL agent victim, yet by using a new
loss function their method called Adversary Agnostic Policy Distillation (A2PD) forces the
new neural network policy to be highly robust to state adversarial attacks by increasing the
prescription gap of the policy. Thereby the need for an adversarial agent is also eliminated.

2.2 Robust Tactical Network Solutions

The highly dynamic nature of MANETs as well as the steep requirements for reliability and
security of TNs have always made routing challenging. Recently, research is increasingly
looking for RL solutions to managing these IP data flows. In MANETs, Kaviani et al. [12]
utilize multiple RL agents, one at each network node, to regulate datagram traffic by deciding
whether to forward using broadcast or unicast, leading to the network being controlled by
multi-agent RL. Due to the underlying Deep Q-Learning RL agents the authors named this
routing algorithm DeepCQ+.

3 Foundations

To formalize the problem of defending TNs against adversarial attacks, a familiarity with
the formalisms employed in RL and TN-related literature is necessary. This Section will also
showcase Proximal Policy Optimization (PPO) [13], which is the RL algorithms used for our
experiments, as well as the adversarial attacks used to evaluate robustness.
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3.1 The Agent-Environment Duality in Reinforcement Learning

The lens of RL views problems as consisting of two components, the environment and an
agent. At time t, the agent receives an observation st of the current environment state and
chooses an action at which is then executed in the environment leading to a reward rt and
a new observation st+1 before this cycle repeats until the environment terminates. The ob-
served state st is the only information the agent receives at each time step and thus the agent
uses this information to determine the next action at. This usually finite chain leading form
the initial state s0 at the start of the environment till its termination at time T is also called
episode, trajectory or rollout τ and can be expressed as

τ = (s0, a0, r0, s1, a1, r2, . . . , sT−1, aT−1, rT−1, sT ). (1)

More formally, this is assumed to be a Markov Decision Process (MDP) and the problem
can be written as a 5-tuple (S,A,R, P, p0). In this tuple, S is the state space of all possible
environment states s ∈ S which are then observed by the agent and A is the action space
consisting of all possible actions a ∈ A the agent can choose from at any time.

R : S × A × S → R is the reward function. Using this function, at a time t the reward
rt is therefore given as rt = R(st, at, st+1). The reward function acts as a metric for the
performance of the agent, i.e. a high reward indicates a good outcome.

Lastly, the environment is encapsulated in the transition function P : S × A → (P(S)).
This transition function takes current state and action as input and outputs a probability
distribution resulting in P (st+1|st, at) being the probability that the next state is st given the
current state st and the chosen action at. Since there is no previous state at time t = 0 the
beginning state is determined by the starting state distribution p0.

An RL training algorithm thus need to train the agent which encapsulates a policy function
π : S → P(A). For this function π(at|st) is the probability of action at being chosen as the
next action if state st is observed by the agent during training. It is to note that after training
the stochastic policy is usually converted to a deterministic policy by choosing the action with
the highest probability for each observation. This same policy is employed at every time step
during a single episode, which is sufficient due to the Markov property stating

π(at|st) = π(at|s0, s1, . . . , st). (2)

Using all of the above enables the sampling of episodes according to a policy, τ ∼ P (τ |π)
or using even simpler notation τ ∼ π. This duality of agent and environment is also expressed
in Figure 1 where the cyclic nature becomes evident and it is visible how each time step leads
to the action, state and reward in the next time step.

As a good agent should provide us with an optimal policy instead of a random one, we
utilize the return
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action 

Agent

goal: provide the
best policy 

to maximize return

reward 

Environment

state state 

Figure 1. Agent-Environment duality. During each time step the agent receives state
observation st and uses this to select action at. This action is then executed in the

environment leading to the reward rt and the next state observation st+1.

R(τ) =
T−1∑
t=0

rt (3)

to evaluate a policy’s performance on an episode. However, to incentivise short term gains
over equal long term gains, using a discount factor γ ∈ [0, 1] this return is modified into the
discounted return

R(τ) =
T−1∑
t=0

γtrt. (4)

This discounting factor γ can also be included in the tuple (S,A,R, P, p0, γ). The ultimate
goal of an RL agent to choose an optimal policy π∗ to maximise the expected value of the
discounted return can hence be formalized as

π∗ = argmax
π

E
τ∼π

[R(τ)] (5)

To find the optimal policy, it is often useful to consider the value of a state or of a state-
action pair for any policy. We can find these through the use of the value function V π(s)
and the action-value function Qπ(s, a) respectively, both evaluating the expected return of an
episode starting with the function arguments. More explicitly they can be written as

V π(s) = E
τ∼π

[R(τ)|s0 = s] (6)

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a]. (7)
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For a fixed state s we can also look at the difference between the value function and the
action-value function for an action a. This measures how much benefit the policy gains by
choosing action a in state s and is called the advantage function Aπ(s, a),

Aπ(s, a) = Qπ(s, a)− V π(s). (8)

3.2 Policy Gradient & Proximal Policy Optimization

To find the optimal policy π∗ we can use deep learning techniques by representing the agent
as a neural network, which takes a state s as input returns a probability distribution over all
actions. Thus the agent’s policy πθ is controlled by the neural network parameters θ. Refor-
mulating the agents goal as a function using Equation 5 we can build the reward function

J(πθ) = E
τ∼πθ

[R(τ)] (9)

as a function of the parameterized policy πθ which we seek to maximise. If we know the
policy gradient∇θJ(πθ), i.e. the gradient of the reward function w.r.t. the network parameters
θ defining the agents policy, we can accomplish this by using stochastic gradient ascent with
the iterative update at time step k of the form

θk+1 = θ + η∇θJ(πθ)|θk . (10)

The policy gradient ∇θJ(πθ) can be estimated via Monte-Carlo methods, first suggested by
Williams [14], similarly to the gradient of a usual deep learning loss function by

∇θJ(πθ) = ∇θ E
τ∼πθ

[R(τ)] (11)

= ∇θ

∫
τ

P (τ |πθ)R(τ) (12)

=

∫
τ

P (τ |πθ)∇θ log(P (τ |πθ))R(τ) (13)

= E
τ∼πθ

[∇θ log(P (τ |πθ))R(τ)] (14)

= E
τ∼πθ

[
T∑
t=0

∇θ log(πθ(at|st))R(τ)

]
. (15)

The thus established iterative updates can be improved through the introduction of a critic
network which is trained to approximate the value function. The critic Vω with parameters ω
is therefore trained to fulfill Vω(s) = V π(s) This enables the use of advantage estimation [15]
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by substituting the value function with the critic and results in Actor-Critic Algorithms pro-
posed by Konda et al. [16]. In these algorithms the policy network is also called actor leading
to the their name. The estimated advantage may then replace the empirical return in Equa-
tion 15, reducing variance for better learning.

Schulman et al. [13] used this framework to develop the PPO algorithm, which utilizes
the concept of a trust region [17], reducing implementation complexity and computational
burden. PPO [13] uses the surrogate objective function

LCLIP := E
(st,at,Ât)∼πθ

[
T∑
t=0

min

(
πθ(at|st)
πθold(at|st)

, clip

(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

))
Ât

]
(16)

to replace the negative of the reward function Equation 9 and can be optimized using Stochas-
tic Gradient Descent (SGD) methods such as Adam [18]. This surrogate objective uses hyper-
parameter ϵ and the estimated advantage Ât. It can also be computed offline, after samples
have been collected, using the saved probability πθold(at|st) calculated according to the net-
work parameters θold from the time of sample collection.

Algorithm 1 Basic PPO algorithm used in this thesis from Schulman et al. [13]. Critic omitted
for readability.

Require: hyperparameters Niters, T , Nepochs and environment env
Initialize policy actor network πθ and with parameters θ
for epoch = 1, . . . , Nepochs do

θold ← θ
D ← {} ▷ Initialize episode buffer
for t = 1, . . . , T do ▷ Collect T time steps worth of data

if env has terminated then
reset env and obtain new st

end if
Sample at ∼ πθold(at|st)
execute at in env and obtain rt, st+1

D ← D ∪ {st, at, rt, πθold(at|st)}
end for
Compute advantage estimates Â1, . . . , ÂT using critic
for iter = 1, . . . Niters do ▷ Train agent using collected data

Sample mini-batch from D
Optimize LCLIP w.r.t. θ using mini-batch and SGD

end for
end for

Algorithm 1 shows the resulting RL scheme which is utilized as the main algorithm for this
thesis. Each iteration consists of episode collection using the environment before this data is
used to optimize the policy actor πθ and the critic Vω for multiple epochs.
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3.3 Adversarial Attacks

While RL has been demonstrated to be capable of solving complex dynamic control tasks, the
security of the agent’s decision making is not assured and needs to be investigated. Adversar-
ial attacks aim to reduce the agent’s performance via malicious perturbations, making them
highly dangerous in areas with high security demands.

Since the work of Szegedy et al. [9] in 2014 adversarial attacks have become a prominent
field of investigation in deep learning algorithms for image classification. Huang et al. [4] ap-
plied similar methods and found that RL algorithms also exhibit vulnerabilities to adversarial
attacks.

The goal of an adversarial attack is to create a modified state observation s′ = s+ δ using
a perturbation δ, such that π(a|s′) leads to the minimal return in the environment. As an
unlimited perturbation could change any state into any other state, the perturbation δ is
regulated using a threshold ϵ and a norm such that ∥δ∥ ≤ ϵ. This also makes the attack more
realistic since an ideal attack would be as stealthy as possible, favouring lower perturbation
values and thereby making the attack harder to detect.

Two such attacks are showcased in Figure 2 against an agent optimized to play Pong. Both
attacks lead to a wrong decision by the agent, causing the agent to miss the ball and lowering
the return. Depending on the norm and the threshold ϵ used to regulate the perturbation’s
intensity, an adversarial attack may be imperceptible to humans.

In addition to the norm constraint limiting the extent of the perturbation, an adversarial
attack may also choose to not attack during every time step of an episode, further limiting
detection. Hence an adversary executes two steps as depicted in Figure 3. First, the adver-
sary chooses if a given state should be attacked. Second, the adversary crafts the adversarial
perturbation used to create the adversarial state. Hence, an adversary consists of two com-
ponents, the attack timing and the attack method.

Loevenich et al. [3] found tactical networks to be vulnerable to adversarial attacks. They
discovered that attacks utilizing more knowledge about the victim agent proved to be more
effective. For the purpose of this thesis, we will test the defensive methods against the same
selection of adversarial attacks as was used by Loevenich et al. [3]. This selection is comprised
of attack timings and attack methods using varying levels of complexity and knowledge.

3.3.1 Attack Timings

The simplest attack timing is the uniform attack which was first employed by Huang et
al. [4] but first named such by Lin et al. [19]. This timing attacks in every time step making
it both the least stealthy timing as well as the most powerful with regards to reducing the
victims return.

Lin et al. [19] also propose a more advanced method. To evaluate if a state is worth
attacking the authors utilize a preference function c : S → R. This function is a measure of
how important the choice of a specific action is for the victim agent. As such it is given as the
difference between the most and the least likely actions as determined by the victim’s policy
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Figure 2. Figure from Huang et al. [4] displaying an example of an adversarial attack
against an RL agent playing Pong. Both are computed using an Fast Gradient Sign Method

(FGSM) method but use different norms. The top attack perturbs each pixel using an
L∞-norm, leading to a wrong action being selected even though the difference is

imperceptible for humans. The bottom attack perturbs only a small number of pixels by a
large amount using an L1-norm, thus creating a fake ball. In both cases the attack causes the

agent to miss the ball.
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Environment

Yes

No Do attack
according to Attack

Timing?
state  is not

perturbed

Victim Agent
Craft Adversarial

Sample 
using Attack Method

Figure 3. Attack methodology. Steps controlled by adversary colored in red.

c(s) = (max
a

π(a|s))− (min
a

π(a|s)). (17)

When the victim agent makes an important action choice in state s, it should strongly prefer
the most advantageous action while avoiding the worst action. Thus, such a state will have a
high preference c(s). The strategically-timed attack [19] uses a threshold β ∈ [0, 1] and will
only attack a given state s should the preference exceed this threshold

c(s) ≥ β. (18)

Thus β regulates the attack frequency and if properly chosen should enable the adversary to
restrict itself to only attacking the most important states. The higher the value of β the less
frequent are attacks. Note that for β = 0 this timing is equivalent to the uniform attack.

3.3.2 Attack Methods

Both of these attack timings can be paired with different attack methods. As many attack
methods have been proposed in recent years, we only focus on a selection of the most popular
ones in this thesis. To craft the best adversarial sample these methods need to create a
perturbation δ which satisfies the constraint in Equation 18.

In this thesis we use an L∞-norm for this constraint. In a tactical network this will make
the adversarial harder to attack as the minor perturbations for each value will be harder
to detect than large perturbations for few values as background noise would impede the
detection process.

The first attack method used in this thesis is the naive attack, first suggested by Pattanaik
et al. [6]. The naive attack searches the space of all admissible perturbations by iterative
sampling of noise.
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Algorithm 2 Naive attack method used to create adversarial perturbation based on Pattanaik
et al. [6]. We use α = 0.5, β = 0.5 for all experiments.

Require: state s, hyperparameters n, α, β, ϵ and victim policy π
a← argmaxa π(a|s)
p← π(a|s)
δ ← 0
for i = 1, . . . n do

Sample δi ∼ ϵ · (2 · Beta(α, β)− 1) ▷ sample perturbation
pi ← π(a|s+ δi) ▷ evaluate perturbation suing policy
if p > pi then ▷ decide if new perturbation is better than previous ones

δ ← δi
p← pi

end if
end for
return s′ ← s+ δ ▷ Return adversarial state

This naive attack is given in Algorithm 2. For n iterations noise is sampled from a beta
distribution. Consecutively, the resulting noise is scaled and shifted to be in the interval of
[−1, 1] before being scaled once more using ϵ to fully utilize the available perturbation space.

The parameters for the beta distribution used by Pattanaik et al. [6] were α = 1, β = 1
but for this thesis we use α = 0.5, β = 0.5. This choice increases the probability of each
perturbation value being close to ±ϵ while the added scaling and shifting still ensures a 0
mean for the perturbation.

The generated perturbations are then evaluated using the victim policy π. Ultimately the
algorithm returns the adversarial sample δ which decreases the probability of the original
chosen action a the most. Hence, this adversarial sample also maximizes the probability of a
different action being chosen.

This attack can be further improved by applying the perturbation in the direction which
causes the greatest loss in return. While the naive attack uses a random direction the gradient
attack of Pattanaik et al. [6] refines this process by applying the perturbation in the direction
of the gradient of a specialized objective function, thus searching the admissible perturbations
more effectively.

To calculate the gradient we use an objective function J ′(s, π) dependent on the current
state s and the victim policy π. The authors hence suggest the cross-entropy loss between
a hypothetical policy always choosing the worst action and the victim policy’s distribution
π(a|s), resulting in

P ′
π,s(a) =

{
1 a = argmina′ π(a

′|s)
0 else

(19)

J ′(s, π) = −
∑
a∈A

P ′
π,s(a) log(π(a|s)). (20)
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Algorithm 3 Gradient attack method used to create adversarial perturbation based on Pat-
tanaik et al. [6]. We use α = 0.5, β = 0.5 for all experiments.

Require: state s, hyperparameters n, α, β, ϵ and victim policy π
a← argmaxa π(a|s)
p← π(a|s)
δ ← 0
grad← ∇sJ(s,π)

∥∇sJ(s,π)∥2 ▷ determine gradient direction to ensure constraint
for i = 1, . . . n do

Sample δi ∼ −grad · ϵ · |(2 · Beta(α, β)− 1)| ▷ sample perturbation using gradient
pi ← π(a|s+ δi) ▷ evaluate perturbation suing policy
if p > pi then ▷ decide if new perturbation is better than previous ones

δ ← δi
p← pi

end if
end for
return s′ ← s+ δ ▷ Return adversarial state

We can now use the gradient∇sJ
′(s, π) to modify the naive attack resulting in Algorithm 3

for the gradient attack. To ensure we do not violate the ϵ constraint we normalize ∇sJ
′(s, π)

using an L2-norm.
The last attack method this thesis uses is the adversarial policy attack. This attack trains

an RL agent to construct the necessary adversarial samples.
Given a victim agent which solves the RL problem Wv = (S,A,R, P, p0, γ) as specified in

Section 3.1, we can define a second RL problem Wa = (S,A′,−R,P ′, p0, γ) which is derived
from Wv. In Wa the reward function from Wv is negated and A′ is the space of all pertur-
bations satisfying the ϵ constraint. To define P ′ we need a policy π(v) intended to solve RL
problem Wv as well as δt ∈ A′ allowing us to formulate

at ∼ π(v)(at|st + δt) (21)
P ′(st+1|st, δt) = P (st+1|st, at). (22)

Hence, if we can find a policy π(a) solving RL problem Wa we can use this adversarial policy
as an attack method. In this case δ ∼ π(a)(δ|s) is used to get the perturbation needed to craft
the adversarial sample. Since we have formulated Wa, we can find such an adversarial policy
through the use of existing RL algorithms such as the already introduced PPO [13].

Note that all of the adversarial attacks used in this thesis require knowledge about the
victim agent. The adversarial policy requires the victim policy as an oracle and the environ-
ment the victim agent was trained on, but needs these only during training. Once trained the
adversarial policy can be executed as a black-box attack. The naive and the gradient attack
method require an oracle giving the victim policy during the execution of the attack. Further,
the gradient method also needs the policy to be solvable using backpropagation.

A benefit of the adversarial policy method is computation time. While the naive and the
gradient attack need to pass noise through the oracle for n iterations, the adversarial policy
needs only to be evaluated once to craft the adversarial sample. As speed may be a deciding
factor in practical usage of adversarial attacks this speed up is of great benefit to the attacker.
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3.4 Tactical Network Environment

To employ RL in TNs we need to formulate an environment, including a reward function. For
this purpose, this thesis will use the TN environment presented by Loevenich et al. [3].

The authors presuppose that a tactical network can be modeled by a graph G = (V,E).
This graph includes both the tactical network nodes V and the weighted edges E represent-
ing the network links. At the start of the environment, the TN is generated as a random
Barabási–Albert (BA) graph.

The TN constraints are modeled by weights w : E → R3 which map each network link
e = (vi, vj) ∈ E to a tuple w(e) = (qe, le, de), signifying the queue length qe ∈ [0, 1], the packet
loss rate le ∈ [0, 1] and the link data rate changes de ∈ [0, 10] respectively.

Using this graph model, any path ϕ of a single packet traveling through the network from
source S ∈ V to target T ∈ V is defined as a set ϕ ⊆ E. Hence, for any path we can compute
a cost as the weighted sum of the overall queue length, packet loss rate and data rate changes
using

w(ϕ) = ω1

∑
e∈ϕ

qe + ω2

(
1−

∏
e∈ϕ

(1− le)

)
+ ω3σ

2[de]. (23)

This path cost utilizes three importance weights ω1, ω2, ω3 as well as an estimate of the
uncertainty within the network, which results from the prepossessing of the dynamic link
conditions as described in Loevenich et al. [20]. With Equation 23 finding an optimal path
ϕ∗, which is the goal of the RL agent, can also be stated as an optimal control problem

minω1

∑
e∈ϕ

qe + ω2

(
1−

∏
e∈ϕ

(1− le)

)
+ ω3 · σ2[de]

subject to:

∀e ∈ ϕ qe ≤ 1.0, 1−
∏
e∈ϕ

1− le ≤ 1.0, 0.0 ≤ de ≤ 9.6.

(24)

The thus formulated goal of the agent is notably always achievable since a generated
BA graph is connected per definition, guaranteeing the existence of a path between any
source and target node. After graph generation the source and target will be determined by
a uniform selection over all nodes.

We define the action space A for the agent to consist of all edges connecting the current
node to any other direct neighbor. This enables the agent to control the path of the packet.
Should the agent attempt to choose any node that is not a direct neighbor it will be heavily
penalized as such an action will result in immediate packet loss.

Similarly the state observation s ∈ S in each time step includes the network link parame-
ters qe, le, de for each edge connecting the current node vi to any possible next node. Further
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s includes a binary encoding, detailing which nodes are the direct neighbors of the current
node.

Lastly, we define the reward function R. We wish to penalize the agent for taking an illegal
action, give out a large reward for a packet successfully reaching the target node T and after
any legal action which moves to an intermediary node we will give out a reward based on
a function emphasizing the path performance according to the optimal control problem 24.
Since the reward function only depends on the current node vi and the node vj resulting from
the agent choosing to traverse the link e = (vi, vj), we may simplify the notation for reward
function by writing R(e) instead of R(st, at, st+1). Thus, we get

R(e = (vi, vj)) =


100 vj = T

−5 e illegal action
1
w1
· qe + 1

w2
· (1− (1− levi ) · (1− le)) +

1
w3
· E[de] else.

(25)

= rt (26)

4 Problem
Based on the environment definition in Section 3, it is evident that adversarial attacks aimed
at reducing the agent’s reward will result in degraded network performance. These attacks
induce the selection of sub-optimal paths, resulting in higher costs or lost packets. Given
the non-negligible impact of adversarial attacks demonstrated by Loevenich et al. [3], it is
imperative to defend the RL algorithm.

In order to mitigate the impact of adversarial attacks, it is necessary to enhance the robust-
ness of the policy, allowing the agent to maintain a level of performance that is comparable
to its default behavior, i.e., the performance achieved when it is not under attack. To achieve
this, we propose modifying the RL algorithm that generates the agent’s policy π.

To provide a more formal description of the problem at hand, we build upon the founda-
tional elements presented in Section 3. Thus, the primary objective of this thesis is to resolve
the following problem.

Problem 4.1 Given a graph environment representing a TN as described in Section 3.4 and an
RL algorithm computing a policy π, is it possible to change the RL algorithm to make the resulting
policy π more robust against adversarial attacks without significantly decreasing policy default
performance?

If it is possible to increase the robustness of the policy without significantly decreasing
the default performance, the second goal of this thesis is to evaluate the advantages and
disadvantages of the proposed solutions. Key characteristics to consider include the additional
training time required, the ease of deployment, adaptability to new RL approaches, and any
potential reduction in default performance. Thus, we aim to select the defensive method most
suitable to be used in future TN development.

Problem 4.2 Given the existence of multiple solutions to Problem 4.1, which solution(s) are the
most appropriate for use in the development of TNs, and what are their respective advantages
and disadvantages?

Having formalized the problem statements we aim to adress, the following Section 5 will
focus on the different defensive solutions we are evaluating.
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5 Defense Methodology

Achieving more robust RL requires modification of the policy network. This becomes possible
through alteration of the learning algorithm or by transforming the policy network after the
RL agent has been trained. This task is difficult due to the need to retain the return achieved
by a less robust agent.

Further, these modifications often lead to an increase in computation cost per epoch. This
leads to the modified RL algorithms achieving less training given the same time or requiring
more time to achieve the same amount of training. For our experiments we chose to give
each agent the same amount of training steps even if this caused the training to last a lot
longer for certain versions.

This Section will explain the schemes we examine. Each defensive method provides differ-
ent advantages and many can also be combined with each other.

5.1 Robust Training using Gradient Attacks

To defend an algorithm against adversarial attacks, many strategies choose to attack the agent
during training. Doing so forces the agent to learn how to achieve a high return while subject
to an adversarial attack. After training this attack is removed for deployment. The agent
retaining its learned robustness is hence more capable of negating adversarial attacks.

Using the gradient attack proposed in the same work, Pattanaik et al. [6] developed a
training scheme aiming to increase robustness through adversarial training. For this thesis
we will employ a modified version resulting in Algorithm 4 which we name Robust Training
using Gradient Attacks (RTGA).

Our version differs in two main aspects. First, RTGA adapts the work of Pattanaik et al. [6]
to utilize a PPO [13] agent. Second, while originally an agent was first trained normally
before the gradient attack was enabled, our version applies the gradient attack even at the
start of training.

Algorithm 4 shows the resulting RTGA. This algorithm modifies the standard PPO agent
as seen in Algorithm 1 during episode collection. Before using the policy network πθ to
determine the chosen action, an adversarial perturbation is added according to the gradient
attack Algorithm 3 to create an adversarial state s′t. This adversarial state s′t is then treated
as if it was the agent’s only observation.
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Algorithm 4 RTGA integrated into the PPO version given in Algorithm 1. Modifies the robust
training [6] for PPO.

Require: hyperparameters Niters, T , Nepochs and environment env
Initialize policy actor network πθ and with parameters θ
for epoch = 1, . . . , Nepochs do

θold ← θ
D ← {} ▷ Initialize episode buffer
for t = 1, . . . , T do ▷ Collect T time steps of data

if env has terminated then
reset env and obtain new st

end if
create s′t using gradient attack (see Algorithm 3) ▷ craft adversarial state
Sample at ∼ πθold(at|s′t)
execute at in env and obtain rt, st+1

D ← D ∪ {s′t, at, rt, πθold(at|st)}
end for
Compute advantage estimates Â1, . . . , ÂT using critic
for iter = 1, . . . Niters do ▷ Train agent using collected data

Sample mini-batch from D
Optimize LCLIP wrt. θ using mini-batch and SGD

end for
end for

5.2 Alternating Training with Learned Adversaries

Zhang et al. [5] also suggest adversarial training but use an adversarial policy instead of a
gradient attack. This adversary also uses PPO and is trained together with the agent.

ATLA is detailed in Algorithm 5. This algorithm uses two RL agents. The target agent given
by policy π(v) will be used after training to process state observations s and choose actions a.
The adversarial policy agent π(a) is used to create adversarial perturbations.

Each epoch begins by keeping the adversary π(a) static, collecting data and training the
target agent π(v). After this the training switches. Now the target agent π(v) remains static
while data collection and training is done for the adversary π(a). A single epoch is only
finished after both agents have been trained.

This approach allows for the adversary to adapt to the agents learned behavior, enabling
the continuous adversarial policy attack to shift which target agent behavior to exploit. Hence
the target agent is forced to avoid developing intrinsic weaknesses as the adversarial policy
will learn to exploit these.

5.3 Robustness via Adversarial Populations

RAP, originating in the work of Vinitsky et al. [7], similarly uses learned adversaries during
training. Instead of a single state adversarial agent used in ATLA, RAP uses multiple action
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Algorithm 5 ATLA [5] integrated into the PPO version given in Algorithm 1. Both the adver-
sary and the target are PPO agents.

Require: hyperparameters N (v)
iters, N

(a)
iters, T , Nepochs and environment env

Initialize policy actor network π
(v)
θ and with parameters θ

Initialize adversarial policy network π
(a)
ω and with parameters ω

for epoch = 1, . . . , Nepoch do
θold ← θ
D ← {} ▷ Initialize episode buffer
for t = 1, . . . , T do ▷ Collect T time steps of data

if env has terminated then
reset env and obtain new st

end if
s′t ← s+ argmaxδ π

(a)
ω (δ|st) ▷ create adversarial sample using static piaω

Sample at ∼ π
(v)
θold

(at|s′t)
execute at in env and obtain rt, st+1

D ← D ∪ {s′t, at, rt, π
(v)
θold

(at|s′t)}
end for
Compute advantage estimates Â1, . . . , ÂT using critic
for iter = 1, . . . N

(v)
iters do ▷ Train target using collected data for target

Sample mini-batch from D
Optimize LCLIP w.r.t. θ using mini-batch and SGD

end for

ωold ← ω
D ← {} ▷ Initialize episode buffer
for t = 1, . . . , T do ▷ Collect T time steps of data for adversary

if env has terminated then
reset env and obtain new st

end if
Sample δt ∼ π

(a)
ωold(δ|st)

at ← argmaxa π
(v)
θ (a|st + δt) ▷ calculate action using static pivθ

execute at in env and obtain rt, st+1

D ← D ∪ {st, δt,−rt, π(a)
θold

(δt|st)}
end for
Compute advantage estimates Â1, . . . , ÂT using critic
for iter = 1, . . . N

(a)
iters do ▷ Train adversary using collected data

Sample mini-batch from D
Optimize LCLIP w.r.t. ω using mini-batch and SGD

end for
end for
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adversarial agents. An action adversarial attack does not perturb the observed state but
instead affects the action space.

While in its original form devised to be used in continuous control problems, for this thesis
we have adapted RAP to discrete action spaces. Given the probability distribution of the
target policy π(v)(·|st) and the adversary policy π(a)(·|st) we sample the attacked action from
the linear combination of both distributions using a hyperparameter α ∈ [0, 1] resulting in

at ∼ (1− α)π(v)(at|st) + απ(a)(at|st). (27)

This enables our RAP version Algorithm 6 to attack the target agent using action adver-
sarial attacks during data collection. In addition, during each episode in the environment we
uniformly sample a different adversary uniformly from a population of n adversaries. The
adversary population covers more potential vulnerabilities, thus forcing the target agent to
generalize by punishing overfitting to a single adversary.

While the version by Vinitsky et al. [7] trains each adversary only on samples collected
while that adversary was used, we choose to train each adversary on all samples by recom-
puting the probabilities for the chosen actions. The increased sample size allows for better
learning and therefore stronger adversaries, requiring more robustness from the target agent.

5.4 Adversary Agnostic Policy Distillation

While the solutions so far employed adversaries during training to increase robustness, Qu et
al. [8] aim to create a policy robust against state adversarial attacks without using a specific
adversary. For this they use PD which allows for the training of a new student network
recreating the behaviour of a different teacher network.

To train the student network π
(S)
θ with parameters θ using samples generated by the teacher

network π(T ) we require a loss function enforcing the wanted behaviour. As a result, A2PD [8]
uses a loss function LA2PD combining prescription gap maximization Lpgm with a Jacobian
regularization Ljr

LA2PD = Lpgm + βLjr. (28)

Given a state st in which the teacher chose action a
(T )
t , the prescription gap maximization

Lpgm is minimized when the student has a very high preference for action a
(T )
t while all other

actions are equally unlikely to be chosen. This can be expressed by

Lpgm(θ) = −π(S)
θ (a

(T )
t |st)η ·

− ∑
a∈A\{a(T )

t }

(
π
(S)
θ (a|st)

1− π
(S)
θ (a

(T )
t |st)

)
log

(
π
(S)
θ (a|st)

1− π
(S)
θ (a

(T )
t |st)

) (29)



22 Jonas Bode

Algorithm 6 RAP [7] integrated into the PPO version given in Algorithm 1.

Require: hyperparameters Niters, T , Nepochs, n, α and environment env
Initialize policy actor network π

(v)
θ and with parameters θ

for j = 1, . . . , n do ▷ we use a population of n adversaries
Initialize adversary π

(a)
ωj and with parameters ωj

end for
for epoch = 1, . . . , Nepochs do

θold ← θ
ωj,old ← ωj for all j = 1, . . . , n
D(v) ← {} ▷ Initialize episode buffer for target
D(a) ← {} ▷ Initialize episode buffer for adversary
for t = 1, . . . , T do ▷ Collect T time steps of data

if env has terminated then
Sample uniformly to get j ∼ Uniform(1, n) ▷ Select adversary from population
reset env and obtain new st

end if
Sample at ∼ (1− α)π

(v)
θold

(at|st) + απ
(a)
ωj,old(at|st) ▷ Sample action from combined

distribution
execute at in env and obtain rt, st+1

D(v) ← D ∪ {st, at, rt, π(v)
θold

(at|st)}
D(a) ← D ∪ {st, at,−rt, π(a)

θold
(at|st)}

end for
Compute advantage estimates Â1, . . . , ÂT using critic
for iter = 1, . . . Niters do ▷ Train agent using collected data

Sample mini-batch from D
Optimize LCLIP w.r.t. θ using mini-batch and SGD

end for
end for
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which is minimized if both the likelihood π
(S)
θ (a

(T )
t |st) is maximized and the entropy over all

remaining actions are maximized. η ∈ (0, 1) acts as a parameter in Equation 7 balancing the
likelihood maximization and the entropy maximization. For our experiments we chose η = 1

3

as Qu et al. [8] determined this to ensure a good balance. Since an adversarial attack needs
to change the action selected by the agent to be effective, which would be less probable for a
large prescription gap, minimizing this loss should increase agent robustness.

This loss is combined with the Jacobian regularization Ljr given by

Ljr(θ) =

∥∥∥∥∂Lpgm(θ)

∂st

∥∥∥∥
F

. (30)

This Ljr is minimized if the partial derivative is approaching 0 for each dimension of the
state space, making it more difficult for small perturbations to each state space dimension to
significantly affect the probability distribution output by the student network.

Additionally, the network size of the student network may be smaller than the network
size of the teacher. This may be used to make the resulting agent faster to compute and to
prevent overfitting caused by excessive network size.

Algorithm 7 states the A2PD based on [8]. Each epoch begins with the collection of sample
data, created by letting the teacher play out episodes in the environment. The collected data
is then used to train the student for several iteration.

Algorithm 7 A2PD [8] algorithm.

Require: hyperparameters Niter, T , Nepochs, teacher policy π(T ) and environment env
Initialize student network π

(S)
θ and with parameters θ

for epoch = 1, . . . , Nepochs do
D ← {} ▷ Initialize episode buffer
for t = 1, . . . , T do ▷ Collect T time steps of data using teacher

if env has terminated then
reset env and obtain new st

end if
at ← argmaxa π

(T )(a|st)
execute at in env and obtain rt, st+1

D ← D ∪ {st, at}
end for
for iteration = 1, . . . Niter do ▷ Train student using collected data

Sample mini-batch from D
Optimize LA2PD w.r.t. θ using mini-batch and SGD ▷ LA2PD given in Equation 28

end for
end for
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6 Results

To evaluate the performance of different defensive methods we compare them using differnt
attack methods and strategies. Besides the algorithms ATLA, RTGA, RAP and A2PD we also
use an undefended PPO agent as a baseline. As a measure of performance we will mainly
evaluate episode return achieved by the agents as the reward function of the environment
correlates a high reward with good TN performance.

Each agent we evaluate has been trained using comparable parameters. A list of hyperpa-
rameters used in our experiments is given in the Appendix A.

In our analysis we focus first on the behavior exhibited by each specific algorithm during
training and when attacked in Subsection 6.1 before looking at strategically timed attacks in
Section 6.2. After this we do broader comparison between agents for each attack in Subsec-
tion 6.3.

6.1 Agent Behavior

During training, RTGA and RAP required the most training time since RTGA needs to evaluate
the policy multiple times to select the best noise in gradient direction and RAP requires a
population of agents to be learned. ATLA also required more computation time than PPO but
less compared to RAP or RTGA. A2PD was very quick to train but requires an already trained
baseline PPO agent.

Due to high variance in episodes if the agent is attacked, each point in the following graphs
uses a sample size of 100 episodes. Therefore, we focus on the mean and standard deviation
of the respective return values to quantitatively evaluate the various defense mechanisms.

Figure 4 depicts all three attack methods evaluated using the PPO agent. It is evident
that for the PPO both the naive and the gradient attack are highly effective. For ϵ = 0.2
both methods have lowered the agents mean return to proximity of the floor imposed by the
environment. The adversarial policy in comparison requires ϵ = 0.7 to achieve minimum
agent return. While very noisy, the curve of the mean return is almost linear for each attack
until the return floor is reached and the mean remains constant.

There is also a strong correlation between the mean return curve and the standard devia-
tion curve. The standard deviation is minimal for a very high agent return before increasing
sharply as the agents performance decreases, reaching a maximum at about the same ϵ as is
required for the mean reward to be 0. This is followed by a falling section before remaining
constant once the standard deviation is about 50 and the mean is close to the floor. This
may be explained by the nature of the environment. If the agent is capable of solving the
environment it will find its way to the Target node very quickly. Otherwise it will wander
around seemingly randomly until it stumbles into a state in which the way to the target node
is clear to the agent. Due to this pattern, which remains valid throughout our experiments,
other Figures will not depict standard deviation. Graphs of the standard deviation will be
listed in the Appendix B instead.

Figure 5 depicts graphs for the mean return achieved by the various defensive agents, each
figure containing the results for one agent evaluated using all uniform attack methods. The
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(a) Mean episode reward for PPO during various
uniform attacks.
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(b) SD of episode reward for PPO during various
uniform attacks.

Figure 4. Episode returns plotted against varying ϵ using standard PPO. Both graphs depict
different uniform attack methods. Left figure depicts mean while right figure depicts

standard deviation.

behavior of the ATLA agent is very similar to that of the baseline PPO agent as indicated by
Figure 5a. However, the other defensive methods show noticeable differences.

The RTGA agent in Figure 5b shows the same behavior for all attack methods, with a
shift along the ϵ-axis indicating a difference in robustness. The adversarial policy is the most
effective attack method against RTGA, even though it was the least effective attack method
for both PPO and ATLA. The gradient attack is less effective but performs better than the
naive attack. There is also a wide range for low values of ϵ during which the mean return
of the attacked RTGA is almost equivalent to the return without attacks. This section then
leads to a sharp decline in the mean return once ϵ exceeds this range. This stable range of ϵ
is greater for the less effective attacks.

RAP in Figure 6 shows unexpected behaviors, achieving a comparatively lower mean re-
turn for ϵ = 0. This is a major negative for the practical use of RAP as a not attacked agent
would perform worse than other algorithms presented here. The adversarial policy attack
follows a similar profile as for PPO or ATLA. The same holds true for the profile of the naive
attack. Despite this, RAP behaves unexpectedly when subject to a gradient attack. Even
though theory suggests the gradient attack to be more powerful than the naive attacks, ap-
plying the noise in gradient direction significantly reduces the impact of the attack, making
the gradient attack achieve a lesser return reduction than the adversarial policy.

This difference between gradient and naive attacks does not exist for the A2PD agent,
both attacks following the same pattern as seen in PPO or ATLA. As seen in Figure 5d, A2PD
does, however, prove to be very robust against adversarial policy attacks. Even for ϵ = 1
the adversarial policy attack does not manage to reduce the mean return below −50. This
may be in part explained by the smaller network size reducing both overfitting as well as the
potential for inherent weaknesses in the network.
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(a) Mean episode reward during uniform attacks
for ATLA.
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(b) Mean episode reward during uniform attacks
for RTGA.
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(c) Mean episode reward during uniform attacks
for RAP.
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(d) Mean episode reward during uniform attacks
for A2PD.

Figure 5. Mean episode returns plotted against varying ϵ. Each figure displays the results
for a single algorithms during uniform attacks using all three attack methods.

6.2 Differences of Attack Timings

During our experiments we examined the effects observed when using strategically timed
attacks. These results are given in Figure 6 for varying values of β. Note that for β = 0
this attack timing becomes a uniform attack. For each attack two separate figures are given,
one showing the mean return achieved by the agent and one showing the mean frequency of
attacks. These figures include all defensive methods and the baseline PPO agent. Frequency
of an episode is calculated as the number of time steps on which the strategically timed attack
chose to attack during one episode divided by the total length of that episode. Each attack
was applied with ϵ = 0.35.

When examining the mean episode return for all attacks and algorithms in Figures 6a, 6c, 6e
a pattern becomes apparent. For all combinations of attack method and defense the mean
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(a) Mean episode reward during strategically
timed naive attack.
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(b) Mean attack frequency during strategically
timed naive attack.
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(c) Mean episode reward during strategically
timed gradient attack.
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(d) Mean attack frequency during strategically
timed gradient attack.
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(e) Mean episode reward during strategically
timed adversarial policy attack.
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(f) Mean attack frequency during strategically
timed adversarial policy attack.

Figure 6. Mean episode returns and attack frequencies plotted against varying β for
ϵ = 0.35. Each figure displays the results for all algorithms during the same strategically
timed attack. Attack frequency is given in percentage of time steps attacked per episode.
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return only marginally increases until β approaches 1 which causes to the strategic timing to
never choose to attack, making the mean return jump up to the values achieved for the same
algorithm without any attack.

Similar patterns exist for frequency. All combinations exhibit a very high attack frequency
with only a sharp drop of for β values close to 1. Despite this there is some variation. RTGA
and RAP appear to be attacked less frequently than the other algorithms. In particular during
the naive attack RAP is attacked even less frequently than RTGA. This indicates that these
two algorithms do not show a strong preference for the best action, since otherwise the
attack frequency would be similar to the other defenses.

Another difference is seen between the frequency of the noise based attacks (naive and
gradient) compared to the frequency of the adversarial policy attacks. While the noise based
attacks do not lower the preference function for PPO, ATLA and A2PD, the adversarial policy
attack does decrease the preference. This is indicated by the difference in the frequency
graphs for the mentioned algorithms between noise based and adversarial policy attacks.
During the adversarial policy attacks the frequency decreases slightly even for comparatively
lower β values.

While these differences exist, they appear to only be minor. Therefore the rest of this
investigation will focus on uniform attacks. This allows us to interpret the results of other
experiments more easily due to the reduced complexity. More work is needed to determine
if other attack timings would show a greater difference with regards to defenses or attack
methods.

6.3 Agent Comparison

We now know the strengths and weaknesses of each solution viewed in isolation and have
evaluated the differences in attack timings. This allows us to compare the algorithms by look-
ing at each specific uniform attack method. The empirical results are visualized in Figure 7.
Each attack is shown in two versions, one with a linear and one with a logarithmic scale for ϵ
since the logarithmic scale is more helpful to differentiate the algorithms for lower values of
ϵ.

First, we will look at the performance of the metrics during a uniform naive attack in
Figure 7a and Figure 7b. On the linear scale it is obvious how much more robust RTGA is
against naive attacks when compared to the other algorithms, achieving a stable performance
even for ϵ = 0.25. The other algorithms perform significantly worse even for lower ϵ. In
particular, the logarithmic plot indicates RAP as the least robust for low ϵ and A2PD is only a
minimal increase in robustness compared to both PPO and ATLA.

Observing the gradient attack in Figure 7c and Figure 7d, we find RAP has lower default
performance for very low ϵ to contrast with its unrivaled robustness for ϵ > 0.35. While
suffering greater mean return reductions for ϵ > 0.35, RTGA proves the best algorithm for
lower ϵ and remains better than ATLA, PPO and A2PD for ϵ < 0.5 even after being surpassed
by RAP. PPO and ATLA seem to perform comparable to each other just as during the naive
attack, both suffering the greatest return reduction for the gradient attack. A2PD is noticably
better than PPO and ATLA but does not manage to match the robustness of RTGA or RAP.
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(a) Mean episode reward during uniform naive
attack on linear scale.
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(b) Mean episode reward during uniform naive
attack on logarithmic scale.
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(c) Mean episode reward during uniform
gradient attack on linear scale.
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(d) Mean episode reward during uniform
gradient attack on logarithmic scale.
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(e) Mean episode reward during uniform
adversarial policy attack on linear scale.
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(f) Mean episode reward during uniform
adversarial policy attack on logarithmic scale.

Figure 7. Mean episode returns plotted against varying ϵ. Each figure displays the results
for all algorithms during the same uniform attack.
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Lastly, we evaluate the agents during the adversarial policy attack in Figure 7e and Fig-
ure 7f. A2PD is clearly the best algorithm here, remaining stable for lower ϵ and being the
most robust by a wide margin for large ϵ. Once again PPO and ATLA achieve similar mean
returns, yet both outperform RTGA and RAP. For ϵ < 0.2 RTGA manages to be more robust
than RAP but for greater ϵ they both perform equally poorly.

The comparisons in Figure 7 show robustness of a defensive algorithm can not be quan-
tified by only observing the qualities it exhibits under a single attack method. The different
algorithms offer different advantages and disadvantages.

We found in our experiments ATLA to be the least notable defensive method. For all attack
methods it matched the performance of the baseline PPO agent, neither being superior nor
inferior. Hence, ATLA fails to increase robustness of the agent in our TN environment.

RTGA provides strong robustness against noise based adversarial attacks but fails to retain
performance during adversarial policy attacks. This might hint at the existence of intrinsic
vulnerabilities in the network trained through this algorithm. While the applied gradient
attack during training leads to robustness against noise based attacks, the weakness to ad-
versarial policies might be more important since adversarial policies are much quicker to
evaluate, making such attacks more realistic for practical use by a malicious attacker.

Those concerns regarding adversarial policy attacks are also present for RAP. Further, RAP
also exhibits a strong vulnerability to naive attacks. This behaviour is counter-intuitive since
the gradient attack was devised as an improvement upon the naive attack The strong ro-
bustness when faced with noise based gradient attacks suggests some resistance to noise
based attacks, yet this is seemingly disproven by the lack of robustness against naive attacks
which are purely injecting noise. One explanation could be that the agent only learns to
resist perturbations applied in the negative gradient direction while remaining vulnerable to
perturbations in the opposite direction.

A2PD is the least effected algorithm with regards to intrinsic weaknesses of the network
architecture. The smaller network size as well as the specific training of the student network
lead to an agent which is highly robust against adversarial policies. However, when sub-
jected to noise based attacks A2PD is less resistant, even though it still manages to achieve
higher returns compared to the baseline PPO agent. Future investigations might look into
adding noise to the samples used for the student’s training, aiming thereby to achieve similar
robustness against noise based attacks as is present in RTGA.

We can thus answer Problem 4.1. Except for RAP all defensive methods managed to re-
tain performance for ϵ = 0 comparable to that of a not attacked PPO agent in the same TN
environment. In addition, A2PD increased agent robustness for all attacks compared to the
baseline PPO. Thus A2PD is one solution for Problem 4.1. RTGA is also very promising as
it achieves excellent robustness against both noise based attacks, only suffering from a vul-
nerability to adversarial policy attacks. ATLA is not sufficient since our experiments showed
no increase in robustness compared to the baseline and RAP is only robust against gradient
attacks, performing worse than the baseline on both adversarial policies and naive attacks.

As an answer to Problem 4.2, A2PD is likely more suitable for TN development as it does
not make the agent more vulnerable against any attack method. Additionally, it is also quick
to train and facilitates smaller neural network sizes for the underlying architecture. This
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should also speed up the evaluation of the policy when the system is deployed in the field,
further increasing network speed. A2PD’s ease of implementation is a further benefit since it
can be used to defend any RL agent. A2PD is not perfect as can be seen in the much greater
noise robustness of RTGA. An ideal algorithm would seek to integrate the noise resistance of
RTGA into A2PD.

7 Conclusion

This thesis has examined various defensive methods for robust RL in the context of routing
in TNs. We have introduced key concepts for understanding RL and adversarial attacks. To
model the dynamic challenges of TNs we have also presented an RL environment reflecting
these circumstances, which was the result of our previous work [3].

Next, we stated the research question this thesis seeks to answer as two formal problems in
Section 4 before detailing the four defensive solutions intended as solutions. The investigated
solutions covered a wide range of approaches. RAP [7] and RTGA [6] served as representative
of adversarial training in our experiments. Similarly we utilized ATLA [5] as an example for
a robust learning scheme and A2PD [8] as a variation of defensive distillation. For this thesis
we used each defense to protect a PPO [13] agent operating in the previously established TN
environment. This required adjustments to the various algorithms which were detailed in 5.

During our experiments we empirically tested the performance of the various defenses
while subject to different attack methods and attack timings. We found strategically timed
attacks to not be very successful in reducing the frequency of attacks required to reduce the
victim agents performance. The most significant effects were achieved for RAP and RTGA
where the strategic timing lead to slight reduction in attack frequency. Future work would
might need to employ more complex timing strategies to regulate attack frequency as strate-
gically timed attacks proved insufficient against the agents in our TN environment.

By varying the strength of the attacks under a uniform timing through adjusting ϵ we
also gained insights into the strengths and weaknesses of each specific algorithm. A2PD
proved to be the best overall solution by improving robustness for all attacks but for noise
based attack methods the slight improvements resulting from A2PD were less meaning full
compared to the large robustness increase provided by RTGA. In turn, RTGA was shown
to decrease agent robustness for adversarial policy attacks, a vulnerability not exhibited by
A2PD. Since adversarial policy attacks are the most likely attack to be put into practise, this is
of major importance. Training time required also varied between algorithms, A2PD proving
to be very quick to train in contrast to the expensive training of RTGA and RAP.

In our previous work [3] we developed an RL environment for routing in TNs, yet the
trained RL agent proved susceptible to adversarial attacks and failed to meet the reliability
and security requirements for practical usage. This thesis addressed this issue by seeking
more robust RL algorithms. To mitigate the vulnerability to adversarial attacks, we have
identified a defensive solution capable of increasing agent robustness across all tested adver-
sarial attack methods. Further we have assessed the advantages and disadvantages of other
defense methods, paving the way for future research seeking to improve upon the best exist-
ing defense A2PD. This marks this thesis as a vital step towards safe and secure RL routing in
TNs. Future work can use the results presented here as a basis for the development of secure
agents featuring even greater robustness.
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A Hyperparameters & Network Architecture

The following lists the hyperparameters used in our experiments:

• Discount factor γ = 0.99.

• For all gradient and naive attacks (Algorithm 2, 3):

– n = 10.

– α = β = 0.5.

• PPO [13] (Algorithm 1):

– T = 4000.

– Niters = 80.

– Nepochs = 1000.

• RTGA (Algorithm 4):

– T = 4000.

– Niters = 80.

– Nepochs = 1000.

– ϵ = 0.2 for the gradient attack.

• ATLA (Algorithm 5):

– T = 4000.

– Nepochs = 1000.

– N
(v)
iters = 80.

– N
(a)
iters = 80.

• RAP (Algorithm 6):

– T = 4000.

– Niters = 80.

– Nepochs = 1000.

– n = 3.

– α = 0.2.

• A2PD (Algorithm 7):

– T = 40000.

– Niters = 800.

– Nepochs = 100.
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– η = 1
3

in Equation 29.

– The trained PPO agent was used as the teacher.

PPO, ATLA, RTGA, RAP and all adversarial policies used the same network architecture.
After each layer a tanh was used as the activation function. Excluding the input and output
layers, the network architecture in order was given by:

• Fully connected layer with 128 neurons.

• Fully connected layer with 128 neurons.

• Fully connected layer with 64 neurons.

The student network for A2PD used a reduced architecture consisting of:

• Fully connected layer with 128 neurons.

• Fully connected layer with 64 neurons.

B Experiment Graphs

The following will show various graphs resulting from our experiments using uniform and
strategically timed attacks.
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(c) Mean episode return for all strategically
timed attacks.

0.0 0.2 0.4 0.6 0.8 1.00

25

50

75

100

125
SD

 o
f e

pi
so

de
 re

tu
rn

Naive Attack Gradient Attack Adversarial Policy

(d) Standard deviation of the episode return for
all strategically timed attacks.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n 
at

ta
ck

 fr
eq

ue
nc

y 
(%

)

Naive Attack Gradient Attack Adversarial Policy

(e) Mean attack frequency for all strategically
timed attacks.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

SD
 o

f a
tta

ck
 fr

eq
ue

nc
y 

(%
)

Naive Attack Gradient Attack Adversarial Policy

(f) Standard deviation of the attack frequency for
all strategically timed attacks.

Figure 8. Experiments for PPO
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Figure 9. Experiments for ATLA
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Figure 10. Experiments for RTGA
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Figure 11. Experiments for RAP
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(e) Mean attack frequency for all strategically
timed attacks.
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(f) Standard deviation of the attack frequency for
all strategically timed attacks.

Figure 12. Experiments for A2PD
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(a) Mean episode return for the naive attack.
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(b) Standard deviation of the episode return for
the naive attack.
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(c) Mean episode return for the gradient attack.
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(d) Standard deviation of the episode return for
the gradient attack.
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(e) Mean episode return for the adversarial
policy attack.
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(f) Standard deviation of the episode return for
the adversarial policy attack.

Figure 13. Episode return for each uniform attack.
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(a) Mean episode return for the naive attack.
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(b) Standard deviation of the episode return for
the naive attack.
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(c) Mean episode return for the gradient attack.
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(d) Standard deviation of the episode return for
the gradient attack.
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(e) Mean episode return for the adversarial
policy attack.
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(f) Standard deviation of the episode return for
the adversarial policy attack.

Figure 14. Episode return for each strategically timed attack.
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(a) Mean attack frequency for the naive attack.
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(b) Standard deviation of the attack frequency
for the naive attack.
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(c) Mean attack frequency for the gradient
attack.
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(d) Standard deviation of the attack frequency
for the gradient attack.
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(e) Mean attack frequency for the adversarial
policy attack.
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(f) Standard deviation of the attack frequency for
the adversarial policy attack.

Figure 15. Attack frequency for each strategically timed attack.
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