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Abstract

In this thesis, we propose a traffic model that collects and fuses real traffic data
from multiple sources, characterizes it and feeds two data applications related to
Intelligent Transportation Systems (ITS): Traffic estimation and incident classifi-
cation. Our investigation starts with the hypothesis that fusing information from
heterogeneous data sources can increase data coverage and support the development
of a robust traffic model. More specifically, the fused data provide enriched infor-
mation about the traffic in an urban area and support a more robust and reliable
traffic estimation and incident classification. Therefore, we introduce a traffic model
that covers two main parts: i) Data Fusion on Intelligent Transportation System
(DataFITS), a framework to collect data from numerous data sources and fuse them
in a spatiotemporal domain, and ii) two data applications to estimate traffic and clas-
sify incidents based on the fused data. The traffic estimation is implemented within
two different models, using naive statistics and polynomial regression. It provides an
estimated traffic feature value for an arbitrary time interval in a certain area. The
incident classification is based on a k-nearest neighbors (k-NN) algorithm that uses
Dynamic Time Warping (DTW) and the Wasserstein metric for distance measuring,
capable of comparing time series and distributions. As a result, DataFITS achieves
a significant enrichment of information, increasing the road coverage by 137% and
fusing spatiotemporal data from multiple sources on 40% of all roads. Furthermore,
we create an extensive data characterization, conducting a variety of analysis meth-
ods, which is possible due to the fused information. The traffic estimation achieves
average results using a naive statistical approach, with an R2 score of -0.11 and error
metrics above 1. Using the polynomial regression model, the results are significantly
better, reaching a high R2 score of up to 0.91 and low error metrics of 0.05, provid-
ing a robust and accurate traffic estimation application. Finally, the robustness of
our incident classification provides a good result. The model achieves an accuracy
of 90% in a binary classification, detecting the occurrence of an incident. For the
more complex task of classifying a certain type of incident, it scores an accuracy of
more than 80%. In conclusion, the thesis shows that using heterogeneous data fu-
sion improves traffic-related information in an urban area. Furthermore, it is useful
to provide high-quality traffic estimation and incident classification applications, if
appropriate data engineering is applied filtering and correcting the data for a given
application.
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1
Introduction

Mobility plays a key role in modern human life. Our daily routines, travels and
goods transportation are dramatically influenced by the transportation ecosystem
and the way that we use it. For instance, the number of registered passenger cars
in Germany reached an all-time high of 48.5 Million in 2022, an increase of more
than 50% over the last 30 years [46]. Similarly, the amount of passengers in public
transportation services, like buses and trains, has increased over the last years with
a total of 12.6 million users in 2019 and 8.7 million in 2020 [16]. Besides the decline
in the year 2020, as a result of the COVID-19 pandemic, the expressive growth
requires efficient and environmental-friendly transportation systems to support the
new demands.

A major drawback, related to the global transportation system, is given through a
seemingly unavoidable emergence of traffic congestion. This is especially problematic
in urban areas, due to the urbanization that leads to a higher vehicle population.
According to the UN, the amount of people resided in urban areas is going to increase
from 55% of the world’s population (2018) and is expected to reach 68% by 2050 [49].
This describes an alarming state, leading to an increase of environmental damage due
to higher emissions, more fuel consumption, and furthermore, causes serious time
delays in the transportation system [51]. Those delays are especially problematic,
because our modern society highly relies on a timely transportation of people and
goods, so minor slow downs can have a big impact on the supply chain.

Moreover, traffic congestion has a negative impact on the aspect of road safety.
This is a consequence of the higher speed variance among the vehicles and irregular
driving behavior in the presence of congestion, which leads to an increase of road
incidents [52]. Incident statistics show an increase of traffic accidents, with a total
of 1.35 million deaths and 50 million incidents per year, making traffic accidents
the eight leading cause of death globally [59]. Considering these negative effects of
traffic congestion clearly shows a reduction of people’s quality of life and motivates
to improve the mobility and safety of the transportation system.
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Academia and industry have already started efforts to develop the ITS, the new age
for transportation systems. Some of the intents of the ITS are to be environmental-
friendly, cost-efficient and use different techniques in the context of communication,
data analysis, and information technology [40]. ITS is especially useful within smart
cities, which offer a well distributed communication infrastructure. This enables
real-time monitoring and the access to historical data from urban activities, opening
opportunities for the design of intelligent systems [8]. As a result, this thesis is
going to study certain ITS applications that can be used to provide solutions to the
problem of traffic congestion. In general, the usage of ITS helps to reduce risks,
high accident rates, traffic congestion, emissions and more, while increasing safety,
reliability and the general flow of traffic [40].

Most applications in the context of ITS require a significant amount of high quality
data, related to the transportation context. Together with a smart city, offering
access to historical data, this thesis uses heterogeneous data fusion to combine data
from many diverse data sources. We overcome the issue of data availability by using
this concept and enrich the information which can be used in ITS applications. For
this thesis, we are considering a spatiotemporal fusion of data, combining information
based on the same location and point in time. In the next section, we are introducing
a set of challenges related to the mentioned techniques and explain the main problems
discussed by the thesis.

1.1 Problem

Given the introduced topic of heterogeneous data fusion, we define the first major
research question of this study:

How to fuse free, heterogeneous information from different data sources in a spa-
tiotemporal way, to provide a robust dataset of traffic-related information?

To answer this question, we investigate the availability of transportation data in
Germany, that is openly accessible or covered by a free subscription of a commercial
data provider. Moreover, we are discussing heterogeneous data fusion, providing a
technique to combine different types of data in a spatiotemporal way. The concept
can be used to partially overcome existing data problems, like spatiotemporal gaps,
sensor errors or low accuracy, for instance. However, using the data fusion concept
adds new challenges, like the conversion of data types or comparing data in a spa-
tial and temporal aspect, increasing the complexity to create a robust dataset of
information. Furthermore, we need to overcome data issues, such as different data
structures, errors in the acquisition and acquired data (e.g., wrong measurements,
missing values), outliers, conflict, incompleteness and vagueness.

Designing a solution for the first research question provides access to an enriched
set of heterogeneous transportation data that can be used within applications to
support the ITS. This leads to the second major question discussed in this thesis:

How to provide robust and accurate data applications for traffic estimation and in-
cident classification using the heterogeneous fused data

The second research question is related to the design of ITS applications, based on
the enriched dataset. First, we discuss the problems related to the estimation of
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future traffic values, based on a certain set of input parameters. This task has a
high complexity, due to the general heterogeneity of the traffic state, influenced by
aspects like the street type, weather or time of the day. Furthermore, the status
of traffic depends on multiple data features, such as traffic level and speed. Sub-
sequently, providing a model to create a robust incident classification introduces
further problems to this research, including the hard distinctness between several
types of incidents. Precisely, the classification of an accident, congestion or normal
traffic situation, based on a traffic pattern, has a very high complexity. Moreover,
this discipline requires major data preprocessing tasks, including combining several
types of information and removing biased data from the input.

1.2 Hypothesis

Based on the previously defined research questions, our hypothesis is that a traffic
model, using heterogeneous fused data, is more likely to be robust and reliable in the
estimation of traffic and classification of incidents. To prove the given hypothesis, we
propose a complete traffic model, containing: i) DataFITS, a data fusion framework
to collect and combine heterogeneous data from various sources to enrich the quality
of the available information and ii) two ITS applications that utilize the enriched in-
formation from the heterogeneous fused dataset. The first data application is given
by a traffic estimation model, to precisely estimate the status of traffic, depending
on a set of different parameters. Subsequently, the second application is an incident
classification model to detect and categorize different types of incidents with a high
accuracy. Our given hypothesis is verified, by providing a detailed evaluation on all
proposed parts of the traffic model. First, we evaluate the DataFITS by analyzing
and characterizing the data, to indicate the benefits of heterogeneous data fusion.
Subsequently, the performance regarding both data applications is measured, con-
ducting a set of tests that use different setups. Therefore, we can show the benefits
of using heterogeneous fused data within those data applications.

1.3 Proposed Solutions

Following the given problems and stated hypothesis, the proposed solution of this
thesis is split into multiple parts compiling a traffic model:

First, we introduce the DataFITS, a data fusion framework to collect information
from an arbitrary number of data sources. It can be used to create a suitable collec-
tion of data within the context of transportation. We implemented the acquisition
from seven different data sources (commercial and open access), which cover four
unique categories of transportation data (traffic, incident, vehicular and weather).
The provided spatiotemporal data fusion increases the data quantity (higher in-
formation coverage) and the data quality (combining spatiotemporally overlapping
information).

Furthermore, our solution contains two ITS applications, using our collection of
heterogeneous fused data. Therefore, we are introducing a traffic estimation appli-
cation that benefits through the usage of fused information. The model is capable



4 1. Introduction

of estimating future traffic, based on a set of input parameters and historical data.
Furthermore, the second application is given by an incident classification model to
detect and classify incidents based on traffic patterns. The models are developed
using naive statistics and ML techniques, trained on a large amount of heteroge-
neous fused data and further utilize data dependencies, including various correlating
features.

1.3.1 Methodology

The proposed solutions, discussed in this thesis, provide an answer to the research
question on how to use available transportation data to support and improve ITS
applications. We define multiple steps that need to be completed to achieve this
goal:

• Data Collection: Acquire multiple types of data from different transportation-
related data sources, to ensure a reasonable amount of information. The un-
derlying methodology should offer possibilities for expandability of data types
and sources.

• Data Fusion: Fuse the heterogeneous data in a spatiotemporal way. To com-
bine data in a spatial way, we are using a map matching approach and the
temporal fusion is realized by grouping the data using temporal aspects.

• Data Processing: Process the data to be applicable as an input for the traffic
applications. This task includes data analysis, detection and removal of biased
data and further pre-processing.

• Data Applications: Use naive statistics and ML to create applications in the
context of ITS, capable of i) estimating future traffic levels and ii) classify-
ing multiple types of incidents. The respective models require to achieve a
high accuracy, to create a robust macroscopic traffic estimation and incident
classification. Furthermore, the quality of the proposed models is an essential
measure for the benefits of data fusion in the context of traffic modeling.

1.4 Thesis structure

The structure of the thesis text is as follows. Chapter 2 discusses the problems
of traffic congestion, explains the civilian and military context of this research and
finally introduces the concepts of data fusion and applications in the context of ITS.
In Chapter 3, we provide a detailed review about recent solutions focusing on data
fusion, traffic estimation and the classification of incidents, comparing them to our
proposed solution. Chapter 4 defines the concrete problems that are faced when
developing methods for each of the discussed topics, to provide a solution for our
final traffic model. The design of the proposed solution is explained in Chapter 5,
introducing the framework DataFITS to collect and fuse heterogeneous data and
explaining the methodology of both data applications to estimate traffic and classify
incidents. The evaluation conducted in Chapter 6 shows the benefits of data fusion
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and effectiveness of our proposed data applications, providing results that confirm
our hypothesis. Finally the observations are summarized and the potential future
work is discussed in Chapter 7.
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2
Background

The following chapter introduces the background of this study, providing an overview
of the problems related to traffic congestion and furthermore, explains the concepts
of ITS and smart cities. Subsequently, we introduce spatiotemporal data fusion,
combining heterogeneous types of data from multiple sources that describe the same
real-world object or situation. Moreover, we introduce the idea of combining ITS
and data fusion to support military tasks, like emergency rescue operations or in-
formation superiority in urban warfare. Finally, we motivate the use case of an
extensive data analysis and the creation of data applications, that can be used to
improve the current state of transportation.

2.1 Civilian Context

As stated in the preceding introduction chapter, transportation is a highly relevant
aspect of our daily life, with traffic congestion introducing problems that require
smart solutions. Our research is covering ideas to utilize various modern concepts
and technologies, trying to find solutions for better traffic management. Supporting
the existing transportation systems, by using available data and advanced commu-
nication technologies, is a main goal of ITS. An advantage of this concept is the
low cost requirement to improve the available infrastructure by a smart use of the
information through applications and services.

The initial idea of ITS was originally developed in the 1980s, recognizing the combi-
nation of modern computation and communication technologies together with trans-
portation [56]. Following this, the development of various ITS applications contin-
ued, now taking a vital part in the global transportation and being of great interest,
due to an extensive research and development of new solutions [40].

In contrast to other approaches that increase the efficiency of traffic, e.g., expanding
of existing roads, ITS can be used to provide applications to the transportation
system, which require less effort and cost to be realized. The main goal of these
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applications is to increase traffic efficiency and reduce congestion, by utilizing a
combination of various technologies. An exemplary ITS application is to improve
the traffic flow using variable signs (e.g., showing the speed limit), that change their
value according to the current traffic condition and other factors. This technique has
been used for a long time and is widely distributed in Germany, covering 1,500 km
of the 13,000 km total highway road [19].

In general, the data used by ITS applications is collected from sensors, like cameras or
inductive loops, which are distributed along the road infrastructure. Additionally,
those applications can be supported through the data that is available within a
smart city, offering a well distributed communication infrastructure. This includes
intelligent systems, real-time monitoring and historical data from urban activities. A
smart city is defined by the smart and efficient use of digital technologies to achieve
goals, such as better resource management and less emissions. Some examples are the
improvement of urban transport networks, smarter water supply and more efficiency
when providing energy to buildings [12].

2.2 Data Fusion

We can improve the amount of data which is used for the development of ITS
applications, by combining various data types from different sources. This method
is called heterogeneous data fusion and defined as the process of fusing multiple
data entries, representing the same real-world object or situation, into one single,
consistent representation [5]. Regarding the discussed topic of transportation, this
is translated into the combination of information, acquired by multiple sources, to
provide an improved description about a traffic situation.

In general, data fusion is applied in several fields of civilian and military applications,
with an increasing interest of using the technique in the context of ITS and smart
cities [11, 28]. Data fusion describes a set of techniques, varying in complexity,
that can be used to combine the information acquired through different types of
sensors. In context of ITS, the use of statistical methods, like arithmetic mean,
a probabilistic bayesian approach or artificial intelligence methods, provide suitable
data fusion solutions. Some examples for ITS applications, that emerged throughout
the last years, include Advanced Traveler Information Systems (ATIS), automatic
incident detection, traffic forecasting and traffic monitoring [11]. Furthermore, the
amount of smart city applications utilizing data fusion increases. More precisely,
most domains of smart city applications, like smart human mobility, smart living or
smart urban area management, commonly apply data fusion techniques to ensure a
high data availability [28].

2.3 Military Context / Urban Warfare

Alongside the civilian context of this research area, there is a further use-case for
the discussed techniques in the military area. A possible scenario, related to urban
areas, are emergency rescue operations, which can be supported through the usage
of civilian transportation data. When considering a threat (e.g., terrorism, incident
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or disaster) in an urban area, involving civilians that are possibly injured, the fusion
of information, acquired through various sensors within the city, can support mil-
itary operations. The combination of data from different sources provides a more
accurate view on the operation area, improving the decision making and availability
of information. Furthermore, the transportation system has a significant impact
within urban area dynamics, such as the transportation of people and goods. As a
consequence, military operations, such as rescue, counter-terrorism and disasters in
crowd and traffic areas, can suffer delays trying to reach the emergency area.

Moreover, a topic to be discussed in the scope of this thesis is urban warfare. It
describes the type of combat carried out in urban areas. As a result of the ongoing
urbanization, discussed in the introduction, the importance of this military scenario
is further increasing. Especially in 2022, the relevance of this is omnipresent, with
the Russian invasion of Ukraine, including combats being held in urban districts like
Kyiv [62] or Mariupol [18]. The military aspect of research is motivated to improve
the precision and success of missions by using real-time and context-aware informa-
tion, ultimately leading to information superiority. This describes the operational
advantage in a military scenario, by collecting and processing a substantial amount
of information. Military operations in urban areas require timely and context-aware
information to increase their precision and success [39, 50]. Therefore, the collection
of information from different data sources can support the Command and Control
(C2) concept, widely used in the military field, to describe and understand the urban
scenario and make accurate and context-aware decisions.

2.4 Understanding / Modeling of Traffic

Analyzing the data regarding different aspects converts it into understandable in-
formation that can be used to support traffic planning and ITS applications. Fur-
thermore, we can model the state of a transportation network, by representing the
real-world information through data features, such as traffic or speed. This also al-
lows the development of applications, like traffic estimation or incident classification.
In general, there are two major types of traffic models: i) Microscopic Traffic Model:
Considers traffic features at a high level of detail, e.g., model based on characteristics
of different vehicle movements (cars, buses, motorcycles, etc.) and ii) Macroscopic
Traffic Model: Considers traffic characteristics, like speed flow and density, at a
much lower level of detail, e.g., model for a big observed area [3]. Throughout this
thesis we focus on the discussion of a macroscopic traffic model.

The complexity of those models depends on the amount of different features that
are considered as an input. Many models use (spatiotemporal) correlation, which
describes dependencies within the data. An example for this type of correlation is the
relation among different types of traffic related features (e.g., a reverse correlation
between speed and traffic). Furthermore, traffic data contains spatial and temporal
dependencies, also referred to as spatiotemporal correlation throughout this thesis.
An example for this is given through traffic at one area that influences the values
from other connected areas. This dependency can be further observed under the
consideration of a temporal aspect, with roads showing this correlation with a certain
delay.
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Machine Learning (ML) is a technique that is commonly applied in the context
of traffic modeling, to improve the accuracy of a traffic estimation, for instance.
There are various different approaches on how to use ML in this research context,
which are going to be partially covered by the following related work chapter. In
general, the ML algorithms can be used to learn from several traffic-related input
features and utilize aspects like spatiotemporal correlation. This thesis is going to
work with the two main concepts of supervised ML, Regression and Classification.
Regression algorithms learn a mapping function, based on the input data to create
continuous output variables. This is applicable for a traffic estimation approach,
generating a future traffic value based on various input parameters. In contrast
to this, classification attempts to map the input variables to a categorical output
variable, such as incidents, for instance. In more detail, an observed traffic pattern,
with features like level of traffic and speed, is going to be used as an input and
classified to a certain type of incident [15].



3
Related Work

This chapter introduces a variety of literature related to the three main topics of
interest. First, we cover some approaches within the research topic of data fusion to
increase the availability and quality of information. Subsequently, we are discussing
literature covering the idea of traffic estimation, utilizing various methods like data
fusion, correlation, or ML. The last section discusses literature related to predicting
and classifying different types of incidents. We conclude this chapter by providing
a table summarizing the contributions of the discussed solutions compared to the
thesis’ contribution.

3.1 Data Collection and Fusion

Data fusion is a widely used concept that combines data from different sources to
enrich the available information in a given situation [63]. Many ITS applications
and solutions use data fusion to process information from multiple data sources
[11]. However, besides the information advantage, the fusion of heterogeneous data
requires additional data pre-processing, according to various data types and features
which have to be combined [21, 25].

Increasing the amount of data in a given situation is the primary goal of data fusion.
In [51], the authors provide a platform to gather, process, and export heterogeneous
data from smart city sensors. Furthermore, they provide a variety of statistics and
visualizations, but they do not consider data fusion to improve the quality of the
provided information within the data platform. We share a similar motivation, but
instead of solely focusing on the design of a data platform, we further provide a fusion
approach to our collected data through DataFITS and propose two data applications
in the context of ITS.

Emergency rescue operations are another use case that utilizes data fusion to improve
the information provided in an emergency scenario. An exemplary approach to
support such operations is given by Foresti et al. [13], introducing a system for
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emergency management. Their presented approach uses data fusion to combine
information from smart city sensors and reports from involved citizens via social
media to increase the available information. Following the same research interest,
but mainly addressing the path planning problem in an emergency rescue situation,
the authors of [24] provide a methodology to dispatch and route emergency vehicles
by fusing available heterogeneous information, such as casualties and road/traffic
conditions. A further application of emergency rescue planning is presented in [57],
proposing a co-evolutionary algorithm that solves the path planning problem. The
underlying methodology considers the temporal and spatial characteristics of traffic
flow in the urban network.

Furthermore, the data fusion concept is commonly applied to solve the problem of
incomplete data and information overload in the military context. More precisely,
it supports military information systems to reach information superiority, a criti-
cal aspect of urban warfare. It describes the operational advantage as a result of
collecting and processing information [39]. A part of the existing literature pro-
vides applications using multi-sensor data fusion in maritime surveillance [14, 20]
and autonomous vehicle navigation [36]. As a result, the operational advantage in
a military scenario can be strongly supported with supplementary information from
the civilian area. The collection and processing of available information support the
rescue of people or defense against potential hostile adversaries. A practical example
of the first scenario is the combination of social media data and information acquired
by smart city sensors. The social media data, for instance, shared by local users,
can be used to locate groups of people, injured or hiding, which need to be rescued.
This aspect is further supported by stationary sensors on buildings and surveillance
cameras, capable of performing human tracking to identify the location of a person.

3.2 Traffic Estimation

Traffic estimation is an application that is widely covered by the literature, dis-
cussing a variety of different solutions. Besides traditional approaches utilizing a
single dataset of traffic information, there is an ongoing development, including the
addition of data fusion, spatiotemporal correlation, and ML.

The most general form of traffic estimation can be utilized using one traffic data
feature from a single dataset to estimate a future value. However, due to the ongoing
trend of big data and concepts like OpenData (OD), there is an opportunity to
combine information from multiple data sources to ensure a high-quality estimation
of traffic states [23]. The methodology of using heterogeneous data fusion to support
a traffic estimation approach mainly describes the combination of static data (e.g.,
from cameras or loop detectors) and data provided by probe vehicles (e.g., cellular
data or GPS). An example of this is given by Anand et al. [2], using traffic flow
values obtained from video, together with travel time, calculated via GPS data,
to improve the accuracy of their proposed traffic estimation approach. The data
fusion is implemented using a Kalman filter to provide a solution to estimate traffic
density values based on the fused information. They achieve better results than
using non-fused data from video sensors. Similarly, the authors of [27] provide a
traffic estimation solution using data fusion to combine traffic information acquired
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from stationary underground loop detectors and probe vehicles (taxis equipped with
GPS sensors). Compared to other existing approaches, both of these approaches
show an improvement in traffic estimation accuracy due to the heterogeneous traffic
data fusion.

A further approach to support the estimation of traffic values is the consideration
of spatiotemporal correlation within the data. This can improve the accuracy of
a traffic estimation model by identifying specific hidden structures within the data
and the road network. The authors of [17] provide a method to capture the corre-
lation between road segments using a modified version of the Pearson correlation
coefficient. They identify the most influential roads in a correlated road network
by calculating a Cross Correlation between single road segments that also considers
temporal aspects. Furthermore, the dependencies within the road network can be
used together with probe data to fill gaps in the data and estimate traffic data on
locations without any available information [29, 67]. An example for this is given in
[29], creating a model that extracts the correlation within the road network and uses
data from 50 probe vehicles to estimate the traffic of a complete, city-scaled net-
work. Another solution to this problem is given in [34], using data fusion techniques
to overcome the problems of error-prone and sparse data.

The usage of ML models to estimate future traffic states is widely discussed by recent
literature [1, 10, 35, 47, 55, 65, 66]. The authors of [44] provide a survey introducing
many different traffic estimation approaches, categorized by the estimation approach
(model-driven, data-driven, or streaming-data-driven), traffic flow model (the under-
lying physics-based mathematical model representing the traffic dynamics) and the
used input data (characterized by collection method, data representation, and tem-
poral condition). An explicit example for ML in the context of traffic estimation can
be found in [1], providing an auto-regressive model to estimate future traffic flow
values up to 30 minutes ahead in time. The model can adapt to unpredictable events
like accidents or road closures. The proposed evaluation uses data from a traffic sim-
ulator that generates traffic flow information based on historical data. Abadi et al.
provide results with varying estimation errors, dependent on the time, from 2% for
estimations up to 5 minutes ahead and 12% for 30 minutes estimation time.

Additionally, some of the ML approaches utilize the spatiotemporal correlation from
the data, to improve the estimation quality further, outperforming the results of
other existing approaches. Such an example is given in [65], providing a neural
network-based estimation approach using a Graph Convolutional Network (GCN)
and a Gated Recurrent Unit (GRU). The GCN can learn complex topological struc-
tures and can be used to capture the spatial dependencies from the network. More-
over, the GRU can detect dynamic changes in the traffic data and capture the traffic
data’s temporal dependencies. Compared to other existing traffic estimation models,
which do not consider spatiotemporal aspects of the traffic data, the authors of this
approach prove that the usage of correlation significantly benefits the accuracy of
the traffic estimation. Some other similar neural network-based approaches, which
also use spatiotemporal correlation [10, 47], show a similar improvement in the esti-
mation accuracy. As a result of the broad literature coverage of ML algorithms, we
summarize a variety of further traffic estimation approaches utilizing various kinds
of ML techniques: i) [55] proposes a deep learning framework capable of capturing
spatial and temporal features using GCN to estimate network-wide traffic multiple
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steps ahead in time; ii) [35] describes the extension of a Stochastic Cell Transmis-
sion Model (SCTM) with a linear predictor and the consideration of spatiotemporal
correlation; iii) [66] introduces the Graph Multi Attention Network (GMAN), using
an encoder-decoder architecture to provide long-term traffic estimation up to 1 hour
ahead in time.

Finally, there is a limited amount of literature discussing the combination of data
fusion, spatiotemporal correlation, and ML, providing a similar methodology to this
thesis’s proposed traffic estimation application. The authors of [45] propose a model
to fuse heterogeneous traffic data acquired through stationary and dynamic sensors
and use spatiotemporal correlation of the traffic states from each road segment. The
combination of these different information types is provided as an input to a multiple
linear regression model that improves the traffic state estimation accuracy. Wang et
al. [54] introduce a fusion of fine-grained and coarse-grained traffic data, considering
the traffic states of single road segments and areas due to the lack of coarse-grained
traffic data in existing traffic estimation models. The traffic estimation is given
through the utilization of a GCN that captures the spatial and temporal correlation
of the underlying road network and data from various datasets. In contrast to this
thesis, the authors of the last two discussed approaches solely rely on traffic data
reported from various sensors but do not consider different data types. Lastly, the
authors of [64] provide a general platform for spatiotemporal data fusion to support
a traffic estimation application. The approach discusses a fusion method to improve
the accuracy of traffic state estimation with multi-sensor data. They use directly
and indirectly traffic-related data as inputs for two different ML models. The output
values of both models are then fused and used for the traffic estimation application.
Data features like weather and points of interest are considered for the indirectly-
related traffic data. They are used to improve the estimation quality by fusing it
in the proposed spatiotemporal data fusion framework. In contrast to the aspect of
indirectly-related traffic data, the presented study mainly focuses on details in the
fusion process. Furthermore, the authors mainly consider points of interest, type of
zone, and others. as indirectly-related traffic data, whereas this study focuses on
incident-related data.

3.3 Incident Classification

In the course of the high interest regarding ML-based traffic estimation applications,
there is a wide range of literature discussing similar methodologies focusing on in-
cident classification. The goal within the research area of incident classification or
prediction is to reduce the danger and damage of future traffic incidents. To en-
hance road safety in urban areas, proposed applications include traffic management,
warning systems, or emergency rescue operations. Recent investigations in the lit-
erature [30, 31, 33, 43] propose various methodologies contributing an application
for incident detection and most of them are also providing improvements for traffic
management to support rescue operations in urban areas (e.g., controlling traffic
lights via a RTF transmitter placed in emergency vehicles [43]).

Many studies utilize a deep-learning approach to create an incident prediction model.
An example of this is TAP-CNN, a model based on a Convolutional Neural Network
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(CNN) to predict road traffic accidents [58]. Using a state matrix containing traffic
features that influence accidents, together with the CNN, the authors achieve a
higher accuracy in predicting traffic accidents than other approaches, like a back
propagation model. However, one limitation of this approach comes from the lack
of training data, a problem that could be resolved using data fusion to enrich the
available information, like the accident prediction model discussed in [37]. Park et al.
[37] propose a big data approach using the Hadoop framework1, providing an efficient
way of combining the collection, pre-processing, and analysis of the available traffic
data, including information, which is not directly incident-related. Furthermore,
the study provides a classification analysis to classify the data entries into several
groups of different accidents. While the usage of data fusion shows certain benefits in
this approach, the model should consider spatial and temporal aspects of the traffic
incidents to further increase the model’s accuracy. The authors of [41] introduce a
deep learning model that combines incident data with the spatiotemporal correlation
characteristic of traffic accidents. It can predict accidents, try to prevent their
occurrence, and reduce the resulting damage. It has high accuracy and can be
applied to a traffic accident warning system or integrated into intelligent traffic
control systems, improving traffic management. The consideration of only directly-
related incident data is the main limitation of this approach, and a fusion with other
traffic-related features (e.g., traffic flow, weather, etc.) could be used to increase the
model’s accuracy. Lastly, Wang et al. introduce a hybrid approach for automatic
incident detection based on a combination of Time Series Analysis (TSA) and ML
[53]. The presented methodology uses TSA to estimate the traffic at a specific time.
It combines it with ML to detect incidents based on observable differences between
real-world data and the estimated value from the TSA. Evaluating their approach,
the authors show that the accuracy of detecting incidents is higher and faster than
other state-of-the-art approaches.

Concluding our provided literature review, we summarize the previously discussed
frameworks and models, showing their key aspects and functionalities in Table 3.1.
The first column gives a general description of the approach together with the main
aspects listed in the second column. The functionalities of the solutions are provided
in the remaining columns, according to the following labels: i) Data Col. denotes
whether the approach offers a solution for the problem of collecting data, ii) Data
Fus. denotes the use of a data fusion technique, iii) Tra. Est. denotes that the
approach describes a traffic estimation, iv) Inc. Cla. denotes that the approach de-
scribes an incident classification, v) ML denotes that the approach uses ML, vi) Data
Cor. denotes the solution using a form of data correlation. Comparing the traffic
model presented in this thesis to the other presented approaches specifies the main
advantage of our solution: Providing a complete set of features to support ITS appli-
cations, starting from the collection and fusion of data and resulting in two different
data applications. The other approaches currently presented in the literature only
combine some of the listed features but instead focus on specific aspects, offering
specialized solutions in the context of ITS.

1https://hadoop.apache.org
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Topic Lit Key Aspects
Dat.
Col.

Dat.
Fus.

Tra.
Est.

Inc.
Cla.

ML
Dat.
Cor.

Smart
City
Data
Platform

[51]
[22]
[9]

Collect data from
smart city sensors;
platforms to provide
heterogenous data

X

Emergency
Rescue
Operations

[13]
[24]
[57]

Increase available
data in emergency
case; path planning

X X

Data
Fusion in
Military

[14]
[20]
[36]

Support military
information systems;
Surveillance and
reconnaissance on
air, maritime and
ground surface

X

Traffic
Estimation
using Data
Fusion

[2]
[27]

Heterogeneous data;
Spatio-temporal
data fusion; increased
performance in
comparison to using
a single source

X X

Traffic
Estimation
using
Correlation

[17]
[29]
[67]

Correlation of traffic
data features;
Correlation between
streets and areas;
Fill data gaps

X X

Traffic Pred.
using ML

[44]
[1]
[32]

Using modern ML
approaches to create
accurate estimates

X X

Traffic Pred.
using Data
Fusion and
Correlation

[34]
[4]

Fusing data from
mult. sources and use
correlation of features

X X X

Traffic Pred.
using
Correlation
and ML

[65]
[47]
[10]
[55]
[35]
[66]

ML can benefit from
correlation aspects
within the data;
Better results
compared to other
ML solutions

X X X

Traffic Pred.
using Data
Fusion,
Correlation
and ML

[45]
[54]
[64]

Combining benefits
of all three techniques
to further improve
estimation quality

X X X X

Incident
Detection /
Classification

[58]
[37]
[41]
[53]

Inc. Prediction;
Inc.Detection based
on traffic patterns;
warning systems, etc.

X X X X

Thesis

Collect and process
data; Het. Data Fusion;
Data Characterization;
Traffic Estimation;
Incident Classification

X X X X X X

Table 3.1 Comparison: Solutions from literature and our thesis
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Problem Statement

This chapter introduces the problem statement, discussing the issues and challenges
addressed by this thesis. The goal is to answer the following questions: i) How to
collect and fuse heterogeneous data from multiple sources in a spatiotemporal way?
ii) how to design a traffic estimation application using fused data? and iii) how to
classify incidents based on observed traffic patterns?

4.1 Data Fusion

We start by introducing the main problems related to data fusion. We discuss
the combination of heterogeneous data in a spatiotemporal way, providing enriched
information to support and improve ITS applications. Figure 4.1 describes the work-
flow of the heterogeneous data fusion, including civilian and military information.
There is a massive amount of data being collected in the discussed context (e.g.,
through real and virtual sensors in smart cities), reported from different sources and
represented through different types and formats. Moreover, part of the information
is only accessible through a paid subscription and another part is provided through
free public access. In Figure 4.1, the different layers of data represent the available
data sources, e.g., traffic, incident, weather, social media, vehicular and military,
containing data in various types and with different features.

Furthermore, the presence of various data types increases the complexity to provide
robustness against errors in the acquired data. For example, wrong measurements,
missing values, outliers, conflict, incompleteness and vagueness. Therefore, the com-
bination of data from asynchronous sensor operation, including sensor errors and a
particular level of noise, creates a problem with a high complexity [42].

The first task towards a data fusion solution is the collection of available data from
a variety of sources. We include information about traffic, incidents, weather and
vehicular statistics. Based on our investigations, we notice that the available infor-
mation is either distributed via commercial providers or offered freely to the public.
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Figure 4.1 Data fusion of civilian and military information

In both cases, there is no uniform way to acquire the available data, requiring various
techniques to collect the information. Furthermore, the collectible data in a smart
city, for instance, is reported with different spatiotemporal aspects.

The combination of data in a spatiotemporal way is a further challenge in the context
of this thesis. We discuss how to combine data that is reported from numerous
sensors and distributed over various locations at different points in time. E.g., the
combination of data from a stationary traffic sensor and a probe vehicle that traverses
the same location within a given time. Therefore, we need to provide a solution for
spatial fusion using the provided GPS locations. For the temporal fusion, we combine
data entries that are reported within the same situation but at a different level of
time granularity. Additionally, we provide several aggregations for the temporal
data, to group it by aspects such as day of the week, time interval, season, etc.

Moreover, we argue that data fusion can be used to support urban warfare, by enrich-
ing the available data and improving data coverage used by the military. However,
the fusion of civilian and military data has an additional complexity. The reason for
this is given by the different levels of data such as from the ground level (e.g, sol-
diers, vehicles, etc.), up to the level of air or satellite data. Furthermore, due to the
restricted access to military data, we are just able to demonstrate the scenarios that
could benefit from the data fusion concept. Considering a threat (e.g. terrorism,
incident, disaster) in an urban area involving civilians that are possibly injured, we
argue that the fusion of civilian data from different sensors available in a city can
support military operations as well as smart city applications.

In the scope of the discussed problems, this thesis provides a data fusion framework
that combines different types of spatiotemporal data from a list of available data
sources.
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4.2 Traffic Estimation

Next, we introduce the issues related to the estimation of traffic values. The ability to
estimate which roads are congested at a certain point in time is highly relevant, e.g.,
being used by navigation systems to improve path suggestions. The corresponding
problem is defined by estimating the status of any given road or area, calculating a
value that describes data features like traffic or speed [61].

Combining this problem with the concept of data fusion, using information from a
variety of data sources, it could support a more reliable and robust traffic estimation.
This is due to the fact that the behavior of traffic is influenced by many things,
including weather, street type, time, events and the occurrence of traffic incidents.
This increases the complexity of the traffic estimation problem but can also improve
the estimation.

Moreover, traffic features generally show correlated behavior on a spatiotemporal
level. The traffic situation on a given road can influence the state on surrounding
locations. Extracting this type of behavior from the underlying road network and
including it to a traffic estimation approach is challenging, as it requires the analysis
of data features in a spatiotemporal way. Additionally, we require a method to
combine the reported traffic areas if they show an intersection of covered street
segments, to obtain a set of unique traffic areas.

Finally, choosing the right model/parameters to implement a traffic estimation is
another demanding task. The literature shows a variety of solutions utilizing ML,
statistical approaches and correlation. In this thesis, we are going to discuss the pro-
cess of finding an applicable model for the problem of traffic estimation and present
our solutions. Therefore, we implemented two different models, one based on a sta-
tistical approach and the other one based on a ML approach. They provide solutions
to the problem of traffic prediction at a different level of quality and complexity.

4.3 Incident Classification

In order to provide an extensive traffic model, we also address the problem of clas-
sifying different types of incidents based on traffic patterns. Therefore, the model
needs to identify certain patterns within the data, using the traffic features, observed
over time. This problem has a high complexity according to unclear traffic patterns
that are reported as an incident and a hard distinctness between certain types of
incidents, such as accident and congestion.

Incidents have an effect on the traffic situation at the respective location and require
the collection of all traffic data that is related to a given incident situation. The
main issue is the aggregation of data in a spatial and temporal way to cover all
relevant data and provide it to the model.

Furthermore, the duration of each incident is varying and may depend on other
aspects like weather, time, etc., which requires the definition of a reasonable time
interval for the input data, that can represent the complete traffic behavior of each
incident case. However, the data sources solely contain a start time of each incident
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which may be inaccurate due to a potential delay or some sensor noise. Therefore,
we need a method to accurately identify the start and end point of an incident.

Additionally, the given data does contain some incorrect incident reports that consist
of too much noise and show an unrealistic traffic pattern that is not related to any
incident. Including these reports to the model training would lead to biased results
and therefore requires an incident validation mechanism, which is able to detect and
remove those erroneous data samples.

This thesis introduces a data application that is capable to solve a binary and multi-
class incident classification problem, utilizing proper data filtering and processing
methods.
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Design

This chapter proposes a solution to the discussed problems, by defining a traffic
model. The design covers two main parts, presented in Figure 5.1, such as the cre-
ation of a dataset through collecting and spatiotemporally fusing data from multiple
sources. Furthermore, it provides two applications related to ITS, a traffic estima-
tion and an incident classification, which are using the enriched set of data. The
estimation application is implemented in two different ways, based on naive statistics
and ML, whereas the classification is provided through a ML-based approach.

5.1 Data Fusion Framework

In this section, the design of the proposed data fusion framework DataFITS1 is ex-
plained, focusing on the methods for collecting, preparing and fusing heterogeneous
data from the transportation scenario. The main goal of this solution is to improve
the quality of transportation-related data and therefore, enhancing applications in
the context of ITS and military (e.g., emergency rescue or urban operations). As
presented in Figure 5.1, transportation data includes a variety of heterogeneous data
types, such as surveillance data, incident reports, vehicular statistics and weather
conditions. Fusing the data in a spatiotemporal domain increases the amount and
quality of information and supports the development of data applications.

5.1.1 Data Acquisition

The initial part of the framework is the data acquisition process, illustrated in Figure
5.2 (1). The framework requires a set of parameters, defined within a configuration
file, to initialize the data collection process. The geographic area is represented

1https://github.com/prettore/DataFITS
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Figure 5.1 Design of the proposed traffic model

through a Bounding Box (BB), defined by two latitude and longitude values. Fur-
thermore, the frequency of requests (delay between the acquisitions) is interchange-
able, allowing to adapt the collection process based on potential request limits,
given by the data providers. The framework offers a predefined list of currently
implemented data sources, which can be selected for the data collection process.
Depending on the chosen data sources, there may be a requirement of credentials,
which can be added in the corresponding configuration file.

The framework collects transportation-related data, including traffic, incident, ve-
hicular and weather data, via multiple Application Programming Interfaces (APIs)
and web crawling methods, based on the defined setup. The acquisition step fol-
lows a modular application design, ensuring an easy expandability of the framework
functionalities and allowing the specification of new data sources and more data
types. However, it is noticed that, according to the different data sources, there
is a heterogeneity in the information structure and data type (e.g., json, csv, xml,
etc.). DataFITS solves this problem by using various parsing methods, converting
the information into a unique csv format, storing the files based on the data source
and corresponding date.

5.1.2 Data Preparation

Following the data collection, the available dataset is prepared as illustrated in Figure
5.2 (2). First, two dates are defined, spanning a time frame for the preparation
parser. All information belonging in this temporal window is going to be loaded
and processed by the framework, allowing to set a limit to the computational power
required for the data processing step. Moreover, the data is processed individually
per source to reduce the computational cost and time.

Due to the data source heterogeneity, the features are varying in names (e.g., ’Time’
or ’Timestamp’, etc.) and type (e.g, numerical, textual description, factor, etc.),
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Figure 5.2 Workflow of DataFITS

although they are reporting the same information. As a consequence, DataFITS
standardizes the information, addressing the data fields that report the same fea-
tures by a unique identifier. Furthermore, the information about each timestamp
is converted into the universal time format UTC, as it is the worldwide primary
time standard. As a solution to the problem of various data types within the same
feature, the framework implements different forms of data mapping to the respective
information types. The two most common examples are given through a mapping of
descriptive traffic values into a numerical representation and a more simplified infor-
mation mapping regarding the different weather conditions. Therefore, DataFITS
contains multiple dictionaries for those mappings, which can be changed in the con-
figuration file, according to individual user preferences. This is illustrated in Table
5.1, providing an exemplary mapping of traffic values reported from different data
sources and the respective mapping.

DataFITS contains a method to collect a Shapefile (SHP) from OpenStreetMap
(OSM), according to the BB that has been defined in the data acquisition. The
SHP provides a road network, required for the map matching procedure. Each SHP
contains a list of road segments, creating the road network within the specified
BB, allowing to identify each individual segment by an fid value. The amount of
information that can be extracted by the SHP varies based on the purpose. In our
case the framework collects the transportation-related information, like the road
type or the maximum allowed speed. The underlying implementation uses OSMNX
[7], a python package to download geospatial data from the OSM, which offers a free
geographic database without any restrictions.

Additionally to the geographical road network data, the map matching process re-
quires a special data format to match the collected data. Therefore, the framework
provides a method to extract the relevant information (a unique identifier and the
geometric data) and converts the GPS coordinates into Well-known Text Format
(WKT). Furthermore, in case of traffic data, the method monitors the number of
unique reported traffic observations to only match the data once, as the data is pro-
vided on static and non-changing locations. This provides a great improvement to
the performance of the map matching process, which is discussed in the next section.
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Textual Description Numerical Traffic Value
Normal Traffic → 1

Increased Traffic → 5
Traffic Jam → 10

Table 5.1 Exemplary data mapping of traffic values

5.1.3 Data Processing

The data processing procedure, described in Figure 5.2 (3), is structured into three
different sub-tasks. First, we use a map matching algorithm to prepare the spatial
fusion of data according the corresponding road network. Furthermore, the infor-
mation is fused in the temporal domain, to complete the process of spatiotemporal
fusion. In the following, we are giving a description about the most important as-
pects of the data processing, including a selection of methods and algorithms from
DataFITS.

5.1.3.1 Spatial Fusion

The proposed solution regarding the spatial fusion uses a combination of map match-
ing and data processing. Map matching is a technique that takes a set of GPS
coordinates and matches them onto a new set of coordinates within a predefined
GPS error, given an underlying road network. Using data from various sources re-
porting their GPS data with different precision, the DataFITS uses this procedure
to reduce the divergence in precision under consideration of a potential GPS error.
Map matching is widely applied in various map services, such as Google Maps, Bing
Maps and HERE, in order to match the GPS coordinates onto the road network.
Therefore, we investigate a variety of available map matching algorithms in scope
of our research, using different methodologies to solve the problem of matching the
locations, such as the Noiseplanet2, Mapmatching3, and the Fast Map Matching
(FMM)[60]. Evaluating the different approaches, we chose to implement FMM as
the map matching part of DataFITS, because it is a fast open source tool writ-
ten in C++ and Python, offering two different algorithms to achieve the optimal
performance depending on the size of the given road network.

The FMM uses the trip file and the SHP, created during the previous preparation
step of the framework, to match all GPS points. More specifically, the trip file
contains the necessary data for the process, given by the id of each data entry (id)
and the corresponding geometry (geom), in WKT format. In most cases, e.g., for
the reported traffic data, the geometry is given through a Linestring, a geojson
class representing two or more geometric points that are collected through a line,
describing the road path. In contrast, the GPS data reported from the incident-
related data sources is given by a Linestring that solely contains the start and end
point of each incident location. FMM offers a variety of configuration parameters,
including the candidate size, search radius and GPS error, which affects the resulting
path matched to each trajectory and the overall performance. In our proposed setup,

2https://github.com/arthurdjn/noiseplanet
3https://pypi.org/project/mapmatching



5.1. Data Fusion Framework 25

Figure 5.3 Example of the map matching process

the algorithm decides between eight candidates within a search radius of 400 meters,
using 20 meters of GPS sensor error.

Figure 5.3 illustrates an exemplary map matching process, showing a path (left side)
and the trajectory between two points (right side) matched onto the correct path,
given the underlying road network. The first case represents a data entry reported
from a traffic data source, and visualizes the capability of the map matching to fix
imprecise GPS coordinates, due to the differing precision between the data sources.
As visible in the figure, the original reported path (red dotted) is not matching the
road network of the city, but using map matching, we get a realistic description
of the geometry (green). The right side of the figure shows the correct matched
path (blue) between the two points (marked in red) given by the initial data source.
Instead of using the trajectory between those two points (red dotted), the map
matching algorithm provides this improved output, which is further used to support
the spatial fusion process. The output of FMM contains four values for each matched
road trajectory (id, opath, cpath and mgeom), we are using to enrich the data in
different levels:
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• id : A unique identifier for each input entry, used to merge the map matching
data with the other given data features

• opath: An Array containing all roads (fid values) which got matched to each
point from the input trajectory

• cpath: An Array containing the path of roads (fid values) that is traversed by
the input trajectory

• mgeom: An Array containing all GPS points matching the given cpath values.

This additional information is merged back to the initial acquired set of data using
the id values created in the data preparation step. The usage of unique identify-
ing values is required when processing the data from both traffic data sources, as
the framework is not matching the complete set of information in order to save
computing power.

We perform the spatial data fusion by combining the data and create groups based
on the cpath value. Algorithm 1 shows the process of spatial data fusion for n de-
fined data sources, given an underlying road network. It returns one csv file that
contains the complete dataset, including the enriched information from the map
matching process. The presented algorithm is defined through three different parts:
i) REDUCE TRIPS: Generate the trip file using a subset of the data, based on
number of unique reports (only traffic data sources) ii) SPATIAL FUSION: Merges
the map matching output to the initial data iii) MAIN: Runs the other functions
and re-groups the data on a level of fid values. The main function (line 26-46) loads
the respective data and trip files for each of the implemented sources and creates an
empty set to store all unique fid values (line 28-30). In case of a source providing
traffic data, the method REDUCE TRIPS is called, providing an optimization ap-
proach to reduce the computational requirement for this type of data. It decreases
the size of the trip file, which is possible due to the static SHP and the traffic sources
reporting data for the same locations on every acquisition. The respective function
(line 1-8) stores the first acquisition time (line 2) and iterates over the complete set
of data, testing for a change of the acquisition timestamp. On the detection of such
a change, the function uses the current index to create a subset of data, including
the trips from all unique locations that are covered by each traffic data source (line
4-6). We provide a brief run-time analysis, considering a time frame of six months
(180 days) with 144 acquisitions per day and an average of 5,000 GPS points that
have to be matched within one set of traffic observations. This results in a total of
129,600,000 points (144 ·180 ·5000) to be processed by the map matching algorithm,
which is capable of processing 500 points per second on average. Based on this num-
bers, the map matching process would take approximately 72 hours to finish the
task. In contrast, using our optimization approach matches the data once, taking
10 seconds to process the 5,000 distinct GPS points. However, we are just able to
use this approach on the traffic data due to the static locations. For the incident-
and vehicular-related data these locations are changing with each data observation,
and therefore we cannot apply this method.

Next, the spatial fusion is described (line 9-25), taking the trips, SHP and collected
data as an input, returning a set of all unique fids (fid arr) and the data which
got merged together with the information from the map matching process. By
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Input: shp file, sources
Output: fused csv
1: procedure reduce trips(trips, data)
2: first timestamp = data[0][time] % First acquisition time
3: for i=0 to length(data) do
4: if (data[i][time] != first timestamp) then % New acquisition time
5: return trips cut = trips cut[0:i] % Return unique set of trip data
6: end if
7: end for
8: end procedure
9: procedure spatial fusion(trips, shp, data)
10: fid arr = []
11: config = k, radius, error
12: matched = map matching(trip file, shp file, config)
13: data len = length(matched)
14: for i=0 to length(data) do
15: cpath arr = matched[i%data len][cpath]
16: data[i ][cpath] = cpath arr
17: data[i ][cords ] = matched[i%data len][mgeom]
18: for fid in opath arr do
19: if (not fid in fid arr) then
20: fid arr += fid
21: end if
22: end for
23: end for
24: return fid arr, data
25: end procedure
26: procedure main
27: for src in sources do % Repeat for every source
28: data = read csv(src data) % Load data entries
29: trips = read csv(src trips) % Load map matching input
30: fids = {} % A set storing unique fids
31: if (TRAFFIC SOURCE) then % Case: Traffic data source
32: trips← reduce trips(trips, data)
33: end if
34: fids, data← spatial fusion(trips, shp, data)
35: for fid in fids do
36: for entry in data do
37: if (fid in entry[opath]) then
38: fused += entry
39: end if
40: end for
41: end for
42: append csv(fused) % Add fused data to the final csv file
43: end for
44: return fused csv
45: end procedure

Algorithm 1 Spatial fusion
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configuring the variables k (number of candidates), radius (the search radius in
meters) and error (GPS sensor error in meters) (line 11), the user can impact the
map matching process. The respective function (line 12) calls the FMM and returns
the dataframe matched, storing the matched coordinates (mgeom) and the fid values
from the underlying path (cpath) for each data entry within the trip file. The data
fusion is described in the lines 13-23, iterating over both datasets, containing the new
information and all data features. The identifier of the matched data is equivalent
to calculating iterator i modulo the length of the dataset (line 15), because of the
optimization approach for the traffic-related sources. This will ensure, that each
entry is matched to the correct original data entry with the corresponding id. To
fuse the information, all fid values, contained in the opath array, are extracted from
the map matching output (line 15) and added to the data entry in a new cpath
column (line 16). This is a mandatory step regarding the spatial fusion, facilitating
the extraction of fid values from the array of each data entry. Furthermore, the
coordinates of the acquired data are replaced by the matched geometry from the
map matching output (line 17). The last step adds all unique fid values to the array
fid arr (line 18-22), which is returned together with the dataframe containing a new
column describing the cpath values of each entry (line 24).

The return of SPATIAL FUSION is further used to create a new set of data, grouped
by the fid values (line 35-41). The algorithm examines every unique fid value (line
35) for existence in each data entry (line 36), creating a new row in the set of
fused data and adds all features of the data entry (line 37-39). This ensures the
possibility to access each single road segment by an identifier, rather than having only
a cpath variable, representing the list of involved roads for each data report. This
extraction and regrouping of the data, using individual road segments, significantly
increases the memory usage. Therefore, the framework splits the data in chunks of
100,000 rows and processes one of them at a time, drastically reducing the memory
requirement and allowing the use of multithreading to speed up the process. Finally,
each chunk of fused data is appended to the csv output file (line 42), representing the
output of the spatial fusion, by providing one set of data that contains the spatial
grouped information of all data sources according the same road network.

5.1.3.2 Temporal Fusion

In contrast to the spatial fusion, the combination of data in a temporal domain
does not require any type of map matching, but rather processes the available in-
formation related to the aspect of time. As a result of the data preparation, the
information is provided in a uniform data format of UTC. Therefore, the complete
set of information, addressable through the fid values, can be grouped regarding
various aggregations over time (e.g., hour or day). We provide freely configurable
data aggregations within our R scripts which are also used to conduct various types
of data analysis. R is an open source software environment for statistical computing
and graphics, widely used in the scope of data analysis being a powerful tool with
great expandability due to user-created packages adding functions to the R language.
The configuration of the spatiotemporal fused data is given through a data grouping
in a 10 minute time aspect and the possibility to access the data either due to the fid
values, reflecting single road segments or by aggregating over the cpath, providing
the set of connected roads from each observation.
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Figure 5.4 Design of the traffic estimation application

5.1.4 Data Usage

The last step, visualized in Figure 5.2 (4), shows a variety of use cases that are
applicable to the dataset returned by the DataFITS framework. The enriched data
offers many possibilities in military and civilian fields, by increasing and enhancing
the information in a given urban area, supporting decision-making in the context
of smart cities and urban military operations. At this stage, we create different
types of statistics and visualizations, showing spatiotemporal data analysis, e.g.,
visualizing the data coverage. Moreover, the spatial analysis provides heat maps
and density plots separated by each source and based on different features such as
the number of observations, traffic, speed and incidents. On the temporal analysis,
DataFITS provides time-series statistics regarding a specific time window and shows
the correlation between different features. In scope of the presented thesis, the main
aspect of data usage is to provide access to a big amount of high quality data allowing
the creation of different data applications.

5.2 Traffic Estimation

Following the description of creating a heterogeneous fused database, we present the
design of our proposed traffic estimation application, shown in Figure 5.4. First, we
introduce a variety of data preparation steps to process the fused data, including
grouping the data based on intersecting traffic areas, find similar regions based
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Figure 5.5 Group traffic data by a set of unique areas

on correlating traffic behavior and perform a train-test-split on the data (step 1).
Subsequently, the traffic estimation model is created and evaluated using the test
data (step 2). We designed the respective application based on two different models,
using naive statistics and a ML-based regression.

This section introduces two traffic estimation models provided in scope of the thesis.
First, we developed an approach based on naive statistics (mean value) to create an
estimation for traffic values. The model predicts traffic values for a single region on
a defined weekday and uses traffic data from correlating regions for the estimation.
Furthermore, we propose the methodology of a robust ML model that provides
an accurate traffic estimation for a given region under certain parameters (e.g.,
weather, street type, etc.). The model uses a regression algorithm, trained on the
heterogeneous database of traffic data.

In the following, we are going to explain the design of both models in detail, starting
with the preprocessing procedures which are the same for both approaches. Subse-
quently, the creation of both models is described, focusing on the different aspects
of each respective model.

5.2.1 Preprocessing

The fused data, generated by the DataFITS, is processed by several methods, before
it is used as an input to the estimation models. First, a subset of data is created,
by removing the incident reports, as they are not required for the estimation. The
application provides a procedure to calculate the intersection between road segments
and combines them accordingly to group the data by individual areas. Moreover, we
provide a method to calculate data similarities using the correlation of data features,
to include this information in the estimation of each respective area.

The initial data preprocessing steps are visualized in the flow diagram shown in
Figure 5.5. First, because the traffic estimation procedure solely requires data con-
taining traffic information, the data is filtered, removing all rows and columns that
contain incident-related information (step 1). This step is necessary to reduce the
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memory requirement, according to the particularly high amount of data. Next, the
data is grouped by the spatial aspect of areas that contain one or multiple road
segments. Using a data aggregation over the cpath variable, we create a list of areas
contributing traffic information to the dataset (step 2). In fact, we observed that
there exist some areas that have an overlapping behavior, basically describing the
same traffic region but with a minor difference in the covered road segments. This
is a result of the data fusion, combining traffic areas from individual data sources.
Therefore, we provide a method to combine those intersecting regions, resulting in
a set of unique and distinct traffic areas (step 3). The underlying function iterates
through all existing areas, calculates pairwise intersections and combines them if
the amount of overlapping road segments is above a defined threshold. Finally, the
initial set of fused data is re-grouped according to the new set of combined areas,
resulting in the input dataset that contains all information combined for each area
(step 4). Therefore, the final input dataset can be grouped by each individual traffic
area and filtered by any arbitrary parameter, providing the input to both traffic
estimation models.

Furthermore, the proposed design contains a procedure to increase the amount of
input data for each area. We provide a function to add further data points from
other, similar behaving regions, to the area of interest, using the aspect of data
similarity. Therefore, we are going to utilize a modified version of the Pearson
Correlation Coefficient and the DTW, to identify correlated regions that show a
similar traffic behavior. The correlation between two time series was defined in [17],
and adapted for our proposed methodology:

Xi,j =

∑L
t=1(Si(t)− S̄i)(Sj(t)− S̄i))√∑L−t

t=1 (Si(t)− S̄i)2 ·
√∑L−t

t=1 (Sj(t)− S̄j)2

(5.1)

Using the correlation defined in Equation 5.1, we can calculate the respective value
between two time series of any traffic data feature Si(t) for two regions i and j.
We calculate this value between every pair of regions, and define a threshold of
correlation thcor to identify similar regions.

However, this type of correlation can solely describe a linear relation between two
variables and therefore, results in high values for two time series with a similar traffic
pattern but at a different level of values. An example for this is given by two areas
that show the same increase of traffic at the same point in time, e.g., from 1-5 and 5-
9 respectively, would be considered highly correlated using this approach. However,
due to the much higher level of traffic, the information from the second area is not
feasible as additional information for the first area. Therefore, we use the DTW
algorithm to measure the distance between two time series, and set a threshold
of DTW thdtw, to ensure that both correlating areas are on a comparable level.
DTW is an algorithm to measure the similarity between two time series that are not
synchronized. More precisely, DTW is capable of using a temporal alignment of the
data pattern resulting in a more similar comparison than using e.g., the Euclidean
distance, comparing timestamps regardless of the feature values [48].

Calculating both, correlation and DTW for the data features of traffic and speed,
we define the following threshold for identifying similar regions:

(cortraf ≥ thcor ∧ corspeed ≥ thcor) ∧ (dtwtraf ≤ thdtw ∧ dtwspeed ≤ thdtw) (5.2)
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As a result we can generate a set of traffic regions, that show a similar and correlating
behavior for all areas within our dataset. This information can then be used to
generate a larger set of input data for each area, described in the next section.

We use the complete set of data, filtering it accordingly to a single traffic area to
generate the input data for the traffic estimation. Furthermore, a subset of input
data is created, according to the chosen set of parameters regarding time frame,
weekday, street type and weather. Before the initial creation of the respective traffic
estimation models, we require a method called Train-Test-Split, generally used in
ML applications. Using this method allows us to evaluate the performance of both
models. Therefore, the full dataset is split into a set of data points that are used to
train the model (train dataset) and another one to test the model and evaluate the
performance (test dataset). The split is performed by randomly sampling all avail-
able data points for each area, and split them according to the defined parameters.
Using a data splitting procedure allows to simulate each models’ performance on a
new set of information that is unknown to the model. Testing a traffic estimation
model on the same set of data that it was trained on could lead to a biased result
and overfitting, which denotes that the model is too close to the particular set of
training data.

5.2.2 Model Creation

Subsequently to the explained data preprocessing steps, this section provides a
description regarding the creation of both individual estimation approaches: The
statistical-based model and the ML-based model.

5.2.2.1 Naive Statistical Model

Initially, we designed a simple methodology, based on a naive statistical approach,
to estimate traffic values. The model takes a subset of data entries from the train
dataset, that serves as the underlying input data for the estimation, based on a
selected time interval and one respective day of the week. The approach utilizes a
naive and intuitive calculation of estimation values. It groups all data points that
represent the same time, neglecting the information about the date, and calculates
the mean value. Moreover, in case of existing similar regions for the respective area,
the approach computes the average traffic value from this additional data points.
The final estimated value is generated by calculating the mean of those two average
results, representing 50% of data from the observed region and 50% from all similar
areas. Within the time frame of this thesis, we presented this naive approach in a
publication [69].

Y (t) = x(t) +
1

ncorr
∗
ncorr∑
i=1

xi(t) (5.3)

Equation 5.3 describes the calculation of Y (t), representing an estimation value for
a time point t. Additionally to the mean of the original region at time t, x(t), we
also add the average from all corresponding regions i ∈ 1, ..., ncorr, represented by
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the second part of the equation. Subsequently to this naive approach we further
wanted to propose a more refined solution, leading to the investigation of ML within
the context of traffic estimation.

5.2.2.2 ML Model

In contrast to the statistical approach, the ML-based solution adds more complexity
to the generation of the estimated traffic value. Supervised ML approaches can be
categorized into two types of estimation algorithms: Regression and Classification.
Regression solves the problem of predicting continuous variables according to the
data labels, representing the same type of variable (e.g., use traffic values to estimate
a new traffic value). In contrast, a classification task is used on data with class
labels and solves the problem of categorizing data samples into different classes.
The proposed traffic estimation model uses regression to estimate continuous traffic
values (e.g., traffic level and speed), based on historical data.

A regression algorithm can be implemented in various types, e.g., through a linear
or polynomial regression. Following the same goal of modeling the relationship
between two variables (explanatory and response variable), the type of regression is
determined by the underlying technique. In case of the simple linear regression, the
model is fitting a linear equation to the input data.

Y = θ0 + θ1x+ ε (5.4)

Equation 5.4 describes the approach to find an intercept θ0 and slope θ1 on the
explanatory variable X to represent the dependent variable Y in the best way. ε
represents a random bias variable, adding noise to the fitting process. The underlying
estimation method of the model reaches this goal by minimizing the sum of residual
squares between the observed targets in the dataset and the estimation [38]. The
residual sum of squares in a model with one explanatory variable X is defined by:

RSS =
n∑
i=1

(yi − f(xi))
2 (5.5)

Therefore, Equation 5.5 describes the sum of squares between all predicted points
f(xi) and the corresponding variable to be predicted yi, which has to be minimized
by fitting a linear line. A main problem of the linear regression algorithm is given by
its linearity which often results in an underfitting of the data. This denotes that the
one-dimensional complexity of the linear model is not suitable to represent certain
datasets. The problem is visualized in Figure 5.6 a), showing the linear regression
line not being able to accurately represent the traffic behavior from an exemplary
area within our dataset.

Due to the non-linear aspect of traffic data, linear regression is not suitable for our
data application. Therefore, we preserve the problem of underfitting, by increasing
the complexity of the regression model and use a polynomial regression:

Y = θ0 + θ1x+ θ2x
2 + θ3x

3 + ...+ θdx
d + ε (5.6)
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Figure 5.6 Comparison: Simple linear regression and polynomial regression

Equation 5.6 shows a higher order polynomial, up to a degree d, that can be used
to create a representation of the dependent variable Y at a much higher level of
quality. This fact is also visualized in Figure 5.6 b), showing a regression line with
an exemplary degree of 10 that provides a much better estimation regarding our
available traffic data. As a result, we use a polynomial regression approach in the
provided ML-based traffic estimation model. The implementation calculates an or-
dinary least squares linear regression, resulting in an estimation that minimizes the
sum of squares between the dependent and independent variable.

The proposed model is setup to estimate traffic values on an arbitrary time frame
(up to 24 hours) for a set of defined parameters: Data feature (traffic, speed, etc.),
weekday, weather and road type. An example for such an estimation is given by
calculating the traffic level on a Monday in a selected motorway area for the whole
day, resulting in 144 estimated data points (1 per 10 minutes). However, before
we can conduct an estimation based on the available information within the train
dataset, we need to process the timestamp of each data entry. First, we neglect
the information about day, month and year, because the model solely considers
time information related to minute, hour and day of the week. Furthermore, the
time information, represented through a python datetime object, is converted into a
numerical value, to be used as an input for the regression model. Next, the converted
data is reduced to a subset which is used to train the model, filtering entries by the
defined parameters and the area of interest.

The function ESTIMATE, presented in Algorithm 2 describes the calculation of
the estimated values. Using the area and a polynomial degree as an input, the
function creates a polynomial regression model, fits the training data and returns
the estimated points of the dependent variable Y . As previously discussed, the initial
step filters the input data by the defined parameters (line 2) and separates the data
points into a train and test dataset (line 3). The explanatory time variable x is
converted from a datetime object into a numerical representation for both datasets
(line 4-6). Lines 7-12 describe the creation of the regression model using a set of
functions, starting with the PolynomialFeatures function that generates a polynomial
feature matrix of a certain degree d. This type of data transformation is required to
represent the given input in a higher order feature space, e.g., a 2-dimensional feature
space (X1, X2) is transformed to (1, X1, X2, X

2
1 , X1 ·X2, X

2
2 ). Therefore, the newly
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Input: area, deg
Output: estimation
1: procedure estimate(area, deg)
2: input = data[parameters]
3: X train, X test, y train, y test = train test split(input, test size=0.2)
4: % Convert time to numeric objects
5: X train = np.array([x.hour + x.minute / 60 for x in X train])
6: X test = np.array([x.hour + x.minute / 60 for x in X test])
7: % Create Polynomial Regression Model
8: poly = PolynomialFeatures(degree=deg) % Create feature matrix
9: poly features = poly.fit transform(X train) % Fit the data to the matrix
10: regression = LinearRegression() % Ordinary Least Squares Regression
11: regression.fit(poly features, y train) % Train the model
12: estimation = regression.predict(poly features)
13: return estimation
14: end procedure

Algorithm 2 Traffic estimation

created feature contains the bias value of 1, all values raised to the power for each
degree ∈ 0, ..., d and all combinations between every pair of features. Next, the input
values stored in the X train array are fitted to the data, and transformed afterwards
(line 9). The variable poly features contains a polynomial feature matrix and allows
to use the LinearRegression class to implement a polynomial regression. Therefore,
an instance of the linear regression is stored (line 10) and we use the fit function
to train the model using the polynomial representation of our test data (line 11).
Finally, we can use the regression model, to estimate the response variables Y for an
arbitrary set of input points (line 12), comparing them to the variables contained in
the test dataset to measure the performance of the model. Furthermore, to determine
the best value for d, we are going to compare the performance of the model, using a
range of degrees from 1 to 20.

In Chapter 6, we are going to illustrate the achieved performance of both presented
models, through a variety of metrics on a set of different experimental setups. Fur-
thermore, we provide a detailed comparison of both approaches and evaluate the
usage of additional correlating data points from similar regions.

5.3 Incident Classification

The second data application of our proposed model implements a classification of
incidents based on traffic data. We are utilizing a modified version of the k-NN
algorithm, capable of learning different patterns from historical traffic data, and
categorizing them as a certain type of incident. The design of our proposed appli-
cation is depicted in Figure 5.7. The initial part of the design implements a variety
of data preprocessing methods making the data applicable to be used as an input
to the classification model (step 1). In a second step, the input data is generated,
adding data from normal traffic situations to the input data of the model, inter-
polates the data if required and performs a train-test-split. Finally, the model is
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Figure 5.7 Design of the incident classification application

created, providing two different approaches (step 3), that we investigated in scope of
this thesis: A binary and multi-class classification (three different types of incidents).
The evaluation of the model is going to be discussed later in Chapter 6.

5.3.1 Preprocessing

The first task of the data preprocessing collects all data related to an incident, a
procedure described in Figure 5.8. Initially, we filter the data, solely taking entries
that provide incident information (step 1). Subsequently, we iterate over all data
entries, extracting the incident location (by fid value), depicted in the second step.
Because the incident-related data sources do not provide information about traffic
data features (e.g., traffic and speed), we add this type of information using the
spatiotemporal fused data. This is a main part of the data pre-processing, due to
the requirement on traffic data from our proposed classification approach. To get
all information related to one specific incident, we provide a method to extract all
traffic areas that are intersecting with the incident area (step 3). The underlying
procedure is explained in Algorithm 3, using the set of all incidents, the unique
regions and an overlapping threshold to output a list that contains the intersecting
areas for each incident observation (step 4).

Our proposed algorithm starts by initializing an array to store the required infor-
mation (intersecting areas), described in line 2. The main part of the algorithm
(line 3-15) contains a nested loop, iterating over all incident entries to calculate the
ratio of identical roads contained within the cpath array. Initially, the outer loop
defines the first area, using the cpath value of the respective incident case (line 3),
and iterates over all traffic regions, setting the respective cpath values to the second
area (line 7). The list of intersecting road segments is stored in the array inter (line
8) and, through dividing the length of this array by the amount of street segments
covered by each respective area, we calculate the proportion of overlapping roads
(line 9-10). If this value matches a defined threshold, the corresponding area is
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added to the array intersect one area, storing all intersecting areas for the observed
region (line 11). On completion of the inner loop, the new information of intersect-
ing areas is added to the array intersecting areas (line 14), which also represents the
final output of the algorithm, containing all intersections for each area in the set
of incidents (line 16). The runtime of the given algorithm is O(n2), but only needs
to be executed once during the data preprocessing to provide essential information
regarding the further steps of the proposed methodology.

5.3.1.1 Input Strategy

Furthermore, to obtain all data related to one single incident observation, we include
the temporal aspect of incident duration. This is necessary, because incidents are
reported over a certain period of time. Therefore, we include data from a time
frame starting four hours before the incident report and ending four hours after,
which provides a sufficient amount of traffic information for each observed incident.
We selected this wide time frame due to potential delays in the reported start time
of an incident, which was noted in a few cases when inspecting the dataset. To
be precise, a few incident cases contained a delay between the reported start time
and a visible effect on the traffic values. Due to these time delays, we are working
with two different approaches, when defining the start time for each incident report:
i) Original start time: Using the original start time reported from the data source
and ii) Estimated start time: Iterating over the traffic data, to find significant changes
in traffic and set the start point based on this observation. We are going to evaluate
the model using input data based on these two different approaches, to see if our
approach provides more realistic representation of the incident start time, leading
to a better model accuracy. Furthermore, we are going to compare the model using
data from a time interval 90 minutes prior and after the incident time and 120
minutes respectively.
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Input: data, unique cpaths, overlap
Output: intersecting areas
1: procedure inc intersect areas(incidents, unique cpaths, overlap)
2: intersecting areas = [] % Initialize output dataframe
3: for i=0 to length(incidents) do % Iterate over all data entries
4: area1 = incidents[i].cpath
5: intersect one area = [] % Intersections for one area
6: for j=0 to length(unique cpaths) do % Iterate over all cpaths
7: area2 = unique cpaths[j]
8: inter = intersect(area1, area2)
9: if (length(inter) / length(area1) >= overlap &
10: length(inter) / length(area2) >= overlap) then
11: intersect one area.append([area2])
12: end if
13: end for
14: intersecting areas.append(intersect one area) % Add areas to output
15: end for
16: return intersecting areas % Returns all intersections for each area
17: end procedure

Algorithm 3 Intersecting areas

5.3.1.2 Incident Validation

Moreover, we introduce a method to validate an incident observation. Therefore, we
process the traffic data, related to the incident, in order to identify cases that contain
too much sensor noise. In other words, incident reports that show no corresponding
effects on the traffic behavior have no positive contribution to the training of the
model and add a potential bias to the accuracy. Therefore, these cases are detected
using the method presented in Algorithm 4 and removed from the input data set.

The proposed algorithm describes three different strategies to validate each incident
case. A first indicator for an instructive incident report is given through a visible
difference between the traffic level at the start and end point of the observation. We
define the end of each incident by the first point in time which is not showing an
incident report anymore. In other words, the database does not report the end time
of an incident. As described in line 3, the average traffic value is taken at the start
and end time respectively, measuring the absolute difference between both values.
If the difference lies above a certain threshold, the respective incident observation is
validated and used as part of the input data (line 4-5).

Moreover, we test the standard deviation over the complete time interval of traffic
values. Based on previous data analysis, we argue that most cases of an accident or
congestion show a high standard deviation due to the substantial change in traffic
behavior. Therefore, the algorithm calculates the standard deviation of traffic for
the given time interval, and tests if it lies above a certain threshold (line 8). In the
positive case, the observation is validated and again marked to be usable for the
input data of the model (line 9).

Finally, in case of the incident showing no clear traffic variation in the previous tests,
we provide a last method: Iterating over a time period close to the reported incident
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Input: start, end, incident data
Output: True/False
1: procedure valid incident(start, end, incident data)
2: % Check absolute difference between traffic at start and end
3: diff = abs(mean(incident data[start]) - mean(incident data[end]))
4: if (diff >= absolute treshold) then
5: return True % Valid incident report
6: end if
7: % Check standard deviation within the traffic over the time
8: if (StandardDeviation(incident data) >= sd threshold) then
9: return True % Valid incident report
10: end if
11: % Sweep over the points after the incident
12: for i=0 to 8 do % Iterate max. 9 times
13: prev = incident data[end + i]
14: next = incident data[end + i + 1]
15: if (abs(prev - next) >= absolute threshold) then
16: return True % Valid incident report
17: end if
18: end for
19: % Sweep over the points before the incident
20: for i=0 to 8 do % Iterate max. 9 times
21: prev = incident data[start - i]
22: next = incident data[start - i - 1]
23: if (abs(prev - next) >= absolute threshold) then
24: return True % Valid incident report
25: end if
26: end for
27: return False % No valid incident report
28: end procedure

Algorithm 4 Incident validation

start time, examining the data for traffic variation. First, the algorithm sweeps over
the data entries, starting at the end time of the incident, until it reaches a maximum
of 90 minutes after (line 12-17). We defined this time limit, arguing to see any kind of
change in traffic within this time frame on a valid incident. Within this iteration, we
check for a change in traffic behavior, by calculating the absolute difference between
two consecutive data points and compare it against another threshold variable (line
13-15). In case of the condition being successful, the entry is finally validated (line
16). In a contrary case, the sweep is accomplished in the other direction, testing for
a change of traffic up to 90 minutes before the occurrence of the given incident (line
20-26). Using this three different methods, we validate each incident to be used as
input to our model. In case of every method failing to validate the incident (line 27),
the respective data entry is removed from the dataset. It is important to remove
these cases from our data, as they lead to a reduction of the model quality. The
method has a constant time complexity O(1) on the validation of a single incident,
resulting in a total runtime of O(n) to validate n incidents.
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Figure 5.9 Create input data for the incident classification

5.3.1.3 Further Preprocessing

Lastly, to create the final dataset for the classification model, three further data
treatments are performed as shown in Figure 5.9:

• ’Normal’ traffic data: The addition of non-incident, or ’normal’ traffic obser-
vations to the input data is essential, because the model requires to classify
between accidents, congestion and a normal traffic situation. The procedure is
visualized in the first step of Figure 5.9, showing the normal data observations
being appended to the incident data. To get the most comparable data, we
add observations that are similar in time, weekday and location. Therefore,
these reports can accurately reflect a non-incident situation to every incident
that is contained in the dataset.

• Data Interpolation: As a result of measurement errors or problems within the
data collection, there is a possibility of missing traffic values within the incident
duration. Therefore, we use a simple linear data interpolation, equalizing the
shape of each data entry (step 2). This linear interpolation approach works
by taking two data points, calculating the mean and taking the result as a
representation of the missing value. We rely on this simple method as it does
not add a lot of overhead and is solely required in very few cases.

• Train-Test-Split: Finally, step 3 shows the process of splitting the total input
data into the train and test dataset. The train dataset is used to fit the ML
model, allowing it to be generalized. Furthermore, the test dataset is used to
evaluate the classification quality. Equally to the estimation in the regression
model, the incident cases are randomly sampled and either used within the
train or test dataset.

5.3.2 Model Creation

Subsequent to completing all previously explained data preprocessing tasks and cre-
ating the train and test datasets, we are now going to describe the creation of our
proposed incident classification model.

The defined problem relates to categorizing a labeled set of data, and therefore
requires a supervised learning approach. Each incident entry contains multiple data



5.3. Incident Classification 41

ACCIDENT

Speed <= 59.1

Traffic <= 6

Traffic <= 3.4 Speed <= 30

Traffic <= 3

Speed <= 20 Traffic <= 5

... ... NORMAL... ... ... ...

Figure 5.10 Example: Decision tree classifier

features and a label referring to a certain incident type (accident, congestion or no
incident). The data features represent a number of time entries (time series) together
with the corresponding traffic level, speed (absolute and relative to the maximum
allowed speed) and road type, for each data entry. We propose a design for classifying
incidents based on two different algorithms, comparing them to see which one is more
applicable to the given task: i) Decision tree classifier and ii) k-nearest neighbors
(k-NN).

A decision tree classifier is a supervised learning algorithm, capable of deciding
between categorical variables using a variety of input features. Figure 5.10 shows
an exemplary visualization of a decision tree classifier, with branches representing
conditions of the different features, leading a path to the class labels (leaves). We
restructured our data from representing a complete time series in a single row to
exactly containing one time value per row, to meet the required data structure of
the algorithm. An initial evaluation, using the traffic data features on an 80-20
train-test split, resulted in a poor model quality. Furthermore, testing the other two
data features could not improve this performance, neither did the approach of using
multiple data features at a time. Therefore, we conclude that this model type is not
applicable for our use case of time series data and is not further investigated in this
thesis.

The next discussed algorithm is a modified version of k-NN, able to work with
time series data. In general, k-NN classifies each data entry, based on the label
represented by the majority of the k nearest neighboring elements. A representation
of the algorithm is visualized in Figure 5.11, showing the k = 5 (dashed circle)
nearest neighbors of one data sample (’X’ in orange). Based on those data entries,
the majority of neighboring elements is labeled as Accident (red points), which
also represents the resulting classification. By changing the distance used in the
algorithm, the approach can be adapted to our time series input data. We are using
two different distance approaches for the k-NN algorithm:

• DTW: An algorithm to measure the similarity between two time series that
are not synchronized. We already explained this approach in Section 5.2.
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• Wasserstein metric: A function to calculate the distance between two proba-
bility distributions µ and ν, defined in Equation 5.7. Intuitively, it describes
the minimum cost of turning one distribution into the other [26].

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
RxR

d(x, y)pdγ(x, y)

) 1
p

(5.7)

Both approaches are applicable on our input data (either as a time series or a
distribution) and we are going to evaluate both of them in Chapter 6.

The proposed model is designed based on the k-NN-Implementation K Nearest
Neighbors with Dynamic Time Warping4. More precisely, we are using the KnnDtw
class and extend it with further functionalities, such as the usage of the Wasserstein
metric. The class takes a parameter n (the number of neighbors) and the maximum
warping window for the DTW, limiting the number of elements to compare and
therefore, offering the possibility to reduce the execution time. Furthermore, the
class contains functionalities to fit the data to the model, classify a given input and
calculate the DTW distance between two time series.

Furthermore, additional data entries that match the input parameters, are loaded
into a dataframe to train the model. As a reminder, we are using parameters such
as the start time (original or estimated) and the size of the observed time frame
(± 90/120 minutes to the start time). The model is initialized with the parameters
k (number of neighbors for the k-NN) and warping window (number of entries to
compare for the DTW). Furthermore, the data feature (traffic, speed, speed relative)
and metric (DTW or Wasserstein) are defined.

The final step, prior to the model creation, is the usage of data sampling to reduce
a given under-representation of certain data classes. Our available input dataset

4https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping
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is imbalanced, as the number of accidents is much lower compared to the other
data classes. Instead of training the model using an imbalanced set of data, there
is the possibility to use either oversampling or undersampling to reduce the data
imbalance: i) Oversampling describes the process of adding more samples of the
under-represented class to the training data, using the information from the already
existing data points. ii) Undersampling provides the contrary part, removing sam-
ples from a majority class. In general, to retain a big amount of available data,
oversampling is employed more frequently than undersampling. In consequence, we
implemented two different techniques for oversampling5 and one for undersampling6

within our classification model:

• Random oversampling : A simple approach that randomly duplicates samples
from the under-represented class and adds them to the train dataset.

• SMOTE : The Synthetic Minority Oversampling Technique (SMOTE) synthet-
ically creates new examples for the minority classes in the given feature space.
More precisely, the algorithm selects a random example from the minority
class, finds the k nearest neighbors and chooses one of them to create a new
data point in between those two data samples. Because we are working with
time series data, this method is used on every point within the series, resulting
in a new, synthesized sample for the training set.

• Near-Miss Undersampling : This undersampling technique balances the dataset
by removing entries from the larger classes that have the shortest distance to
the smaller classes (based on k-NN).

We are going to provide an evaluation of these various data sampling approaches in
Chapter 6 to see the benefits regarding the quality of the model in comparison to
using an imbalanced train dataset.

Finally, we explain the creation of our incident classification model, based on the
underlying implementation presented in Algorithm 5. The model is created using
the previously defined parameters k, warping window and metric (line 2). Next,
the model is trained with the respective data samples from the train dataset (line
3). The test data samples are classified using the predict function, returning the
label for each data sample and a corresponding probability from k-NN (line 5).
Within this function, the algorithm calculates a distance matrix using the specified
metric, containing the respective distance between all data samples (line 10). In
case of the DTW, the algorithm uses the existing implementation, and regarding
the Wasserstein metric we implemented a version for the distance measure in the
1-dimensional feature space. The matrix is sorted by the distance argument (line
11) and the respective labels accordingly (line 12). Using the sorted array of labels,
the most common values are determined (line 14), and the corresponding labels are
extracted (line 15). Furthermore, the method calculates the probability of the given
classifications and returns two arrays containing the classified label and probability
for each data entry in the test dataset (line 17). Taking those returned values, we
can measure the performance of our model, using different metrics related to ML,
which are described in the following chapter.

5https://imbalanced-learn.org/stable/over_sampling.html
6https://imbalanced-learn.org/stable/under_sampling.html
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Input: X train, y train, X test, k, warping window, metric
Output: labels, probabilities
1: procedure inc classification(incident data, unique cpaths, overlap)
2: model = KnnDtw(k, warping window, metric) % Initialize the model
3: model.fit(X train, y train) % Fit the model using the train dataset
4: % Classify samples from the test dataset
5: labels, probabilities = model.predict(X test, k)
6: % Return arrays with classified labels and respective probabilities
7: return labels, probabilities
8: end procedure
9: procedure predict(X test, k)
10: dm = dist matrix(X train, X test) % NumPy array of the distance values
11: knn idx = dm.argsort(n neighbors) % Sort by distance
12: knn labels = y train[knn idx] % Sort labels accordingly
13: % Returns array of the modal (most common) values in the given array
14: result = mode(knn labels)
15: labels = result[0] % Get most common label
16: probabilities = result[1] / k % Get corresponding probability
17: return labels, probabilities
18: end procedure

Algorithm 5 Incident classification

This concludes the design section, which introduced the proposed traffic model,
containing the DataFITS framework, to collect and fuse heterogeneous data in a
spatiotemporal manner. Furthermore, we provided two data applications related to
ITS. First, a traffic estimation using either i) a naive statistical approach or ii) a
polynomial regression, and we designed an incident classification, using a modified
version of the k-NN algorithm and the Wasserstein metric. The next chapter is going
to provide a detailed performance measurement on all parts of the proposed solution
of the thesis, evaluating the complete traffic model.
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Evaluation

This chapter evaluates the contributions of our proposed traffic model that is based
on heterogeneous data fusion. We are combining data analysis and characterization
to show the benefits of data fusion through the DataFITS. Furthermore, we conduct
an extensive evaluation on the proposed traffic estimation and incident classification
applications.

6.1 DataFITS

6.1.1 Experimental Setup and Performance

The acquisition process started on December 1st 2021 and covers a time frame of nine
months, to ensure a high data availability. It provides heterogeneous information of
two German cities, Bonn and Cologne, but we further collected data for another 10
cities in scope of this thesis, ensuring a large database for potential future analysis
and applications. The fusion process was performed using a virtual machine running
Ubuntu 18.04 on 4 GB of RAM and an Intel Core i5 12600k processor with a clock
speed ranging from 3.7 to 4.9 GHz.

DataFITS has a good performance, due to an optimization of the map matching
and data fusion methods, as they require the highest amount of computation power.
First, the map matching performance is high, according to the C++ implementation
of FMM, using multiple optimization approaches [60]. Furthermore, by selecting the
best algorithm regarding the scale of the network, and tweaking the input parame-
ters, we were able to achieve an average map matching speed of 500 GPS points per
second. Within the data fusion procedure, the algorithm iterates over the matched
data, extracts single roads from each data entry and extends the existing data with
one row for each of the contained roads. To reduce the memory usage, the creation of
the final dataset is implemented by processing chunks of data with a size of 100,000
entries. This prevents the requirement of loading an enormous amount of data into
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the memory and instead, reduces it to a manageable size. Based on the hardware
used in this experimental setup, the time to process one chunk is around two and
a half minutes, resulting in a total computation time of just under six hours for
nine months of data, for the Bonn dataset. Furthermore, we processed the data in
monthly subsets to reduce the number of entries that have to be processed at the
same time.

6.1.2 The Data

The acquired heterogeneous data from Bonn has a total size of 14 GB, whereas the
neighboring city Cologne has a corresponding data size of 31 GB.

All data sources covered by the data acquisition are shown in Table 6.1, including the
data features and some general statistics about the time frame and number of entries.
The ’*’ symbol highlights the data features we are using from each data source.
Traffic HERE represents data from the commercial map service HERE1, that allows
a limited collection of traffic information through an API. The limitation regarding
this service is given through a maximum number of requests per API-key. It provides
the highest amount of data within our experimental setup, given 6,038,496 data
entries for Bonn and more than 15 million for Cologne in the given acquisition time
frame. The data contains a variety of features, including speed (average speed of
observed vehicles), a traffic value (range: 0-10) and a GPS coordinate. The other
traffic-related data is provided from the OD service. Similarly to the commercial

1https://www.here.com

Source Features Time Frame Entries (Bonn) Entries (Cologne)
Traffic Speed* Traffic* 6,038,496 15,616,800
HERE StreetDesc* Cords*

Street Info Current Flow
Free Flow

Traffic Speed* Traffic* 3,852,144 3,921,552
OD Cords* RoadID

Incident Inc. Type* IncidentID* 949,709 1,752,953
HERE Comments* Cords*

Road Close Criticality 2021-12-01
Verification Roadway -

Incident Inc. Type* IncidentID* 2022-08-31 1,876,353 2,189,202
BING Comments* Cords*

Road Close Criticality
Construction Inc. Type* IncidentID* 957,398 5,215,535

OD Desc.* Cords*
District Adress
Blockage Carrier

Meteostat Condition* Temperature 6,576 6,576
(Weather) Precipitation Snow
Envirocar Speed* Consumption* 9,917 13,443

CO2* Throttle Pos.* 2014-05-22
RPM* VehicleID* -
Cords* Engine Load 2022-08-31
Temp Phone GPS

Table 6.1 Features reported by the different data sources.
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alternative, this source reports the most important data features, including speed,
traffic (categorical description with four levels) and GPS coordinates. More precisely,
the descriptive values from OD regarding both cities offer a categorization of traffic
into no measurement, normal condition, increased traffic and traffic jam. Comparing
the amount of data entries to the commercial service, the OD has a significantly lower
quantity, offering 3.8 million data entries for Bonn, and 3.9 million for Cologne.

The incident-related information is collected through a variety of data providers,
again offering commercial and free accessibility. Starting with the commercial sources,
HERE provides the type of incident, an identifier value, further comments on the
incident and the GPS coordinates for each data observation. BING2 is the second
data source, that is another commercial competitor in the class of map services,
distributed by Microsoft and offers the same type of data features. Comparing the
number of data entries from each data source shows a superior amount of information
that is reported from the BING service. It doubles the amount for Bonn to a total
of 1.8 million compared to Incident HERE. A similar observation is made comparing
the number of data entries for Cologne, with 2,189,202 reports given by BING to
1.75 million from the other incident data provider. In contrast to the commercial
data sources, OD provides information about constructions or blocked roads due to
events that are happening in the city. The Bonn data contains a total amount of
957,398 entries, which is significantly lower compared to more than five million data
entries for Cologne. This set of data includes information, like the type of incident,
together with an identifier, some additional information and the coordinates of the
respective location. We want to point out, that the number of data entries is not
referring to the amount of unique construction sites. In contrast to other incident
reports (e.g,. accident or congestion), that typically have a maximum duration of
a few hours, a construction site is constantly existing over a time frame of multiple
days, months or years. This naturally increases the number of data reports within
this data source.

In addition to the traffic-related data, we include information about the weather
condition, using the Meteostat API3, an open source project offering hourly weather
data. The service provides a variety of data features, like temperature, precipitation
and snow, but we are mainly interested in the reported weather condition. The API
returns one of 27 different weather condition codes, describing the weather state in
a very precise way. Therefore, we are mapping this condition to seven more general
descriptions of weather (clear, rain, snowy, etc.), increasing the data granularity for
our required use case. Acquiring the data at a hourly base results in a total of 6,576
data entries for both cities respectively.

Finally, we collect vehicular data from the open community platform Envirocar 4.
As previously discussed, the data provided by this service has a low spatiotemporal
coverage, reflected by the number of available data entries for each city. For Bonn,
we observed a spatial coverage of 9,917 matching data entries over the complete
time frame starting in 2014, with Cologne offering a total of 13,443 entries. The
data quality of this service is high, offering vehicular data at a very precise level,
including data features like vehicle speed, fuel consumption, CO2 emissions, RPM

2https://www.bing.com/maps/
3meteostat.net
4https://envirocar.org



48 6. Evaluation

Figure 6.1 Cities of the data acquisition compared to Envirocar data availability

and more. This data is useful to understand the traffic pattern and the driver’s
behavior.

In general, transportation data can be collected for many cities through a variety
of data sources. The main data providers, used within this context, are commercial
map services like Google, HERE or Bing. However, these services follow a finan-
cial motivation and consequently, there is a limited access per user, which can be
increased through paid subscriptions. In contrast to this, there are projects like
OpenData (OD) providing open access to big data from multiple information cat-
egories to everyone. This creates a collaborative data infrastructure, that can be
used by industry, academia and civilian people, matching the idea of a smart city
concept. This concept is widely distributed in Germany and officially supported by
the government, that also adopted a strategy to improve the existing OD ecosystem
[6].

The acquisition process of DataFITS covered 12 of the largest German cities, but
provided poor results on data availability, with only two cities (Bonn and Cologne)
providing easy accessible OD. Furthermore, six out of the 12 cities offer an OD plat-
form, but currently do not provide access to transportation data (München, Bremen,
Münster, Mönchengladbach, Stuttgart, Frankfurt). The remaining four cities did of-
fer access to OD, however it was not applicable in the context of DataFITS. From
our research, we conclude that the OD service in Germany requires further develop-
ment, currently offering a low data availability, that is related to the transportation
scenario. Increasing the OD coverage supports the development of ITS applications
in a strong way, by offering high quality information to all users, and should be
stronger supported by any smart city.

The data collected from the open community platform Envirocar, provides access
to user generated vehicular data at a very high level of detail. The main drawback
regarding this source is the low amount of available data, resulting in a bad spa-
tiotemporal coverage, compared to the other types of collected information. This is
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Bonn Cologne

Source
Total
Roads

Unique
Roads

Fusion
Portion

Total
Roads

Unique
Roads

Fusion
Portion

Traffic HERE 684 339 20.94% 2940 1379 27.14%
Traffic OD 581 195 12.04% 914 173 3.40%
Incident HERE 206 53 3.27% 946 370 7.28%
Incident BING 597 256 15.81% 1944 821 16.16%
Construction OD 52 31 1.91% 193 86 1.69%
Envirocar 433 178 10.99% 905 245 4.82%
Overlapping 567 567 35.02% 2007 2007 39.50%
Total 1619 5081

Table 6.2 Covered roads by data source

a result of Envirocar being a cloud platform for user-collected car data, requiring
external hardware (e.g., an OBD adapter) that is associated with additional cost
to contribute information. Furthermore, the amount of provided data is increasing
at a slow rate, based on our investigation. Currently the service provides 24,300
routes tracked by 1,100 user accounts in total, showing an addition of exactly 1,000
routes over the time frame of 1 year. Figure 6.1 shows a spatial comparison regard-
ing the cities we chose within the acquisition process (left) and the amount of data
entries from Envirocar (right). This explains the decision for choosing these cities
in Germany to start the data acquisition, in order to increase the probability of also
collecting vehicular data.

6.1.3 Data Fusion

To analyze the general benefits of heterogeneous data fusion, we quantify the amount
of roads covered by each source in Table 6.2. It contains information about the total
number of roads, roads that are solely covered by the respective source and the
proportion within the fused data, comparing the cities of Bonn and Cologne. Each
data source is contributing a different amount of information to the fused dataset,
with Traffic HERE having a proportion of more than 20% to the fused data in both
cities. However, especially for the incident-related sources, we can observe a major
amount of additionally covered roads that are added to the dataset, contributing
20-25% of new information. The number of overlapping road segments reaches 35%
for Bonn and 38% in case of Cologne, revealing the potential of further information
enrichment by using heterogeneous data fusion. Basically, nearly 40% of roads are
provided with information by multiple data sources, that can be used to give a better
description on the respective roads. In general, we conclude that using heterogeneous
data fusion improves the amount of information compared to only using a single data
source. Compared to the source with the highest information quantity, we enriched
the 684 roads by 137% to a total of 1619 unique roads covered by the fused data,
and 173% for Cologne respectively.
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Traffic Level Street Type Entries Traffic Speed Speed (rel.)

Low (1) Main Road 2,670,574 (80.85%) 0.86 37.74 68.60%
Normal (4) Main Road 527,150 (15.96%) 2.21 31.88 56.64%
Increased (7) Main Road 61,169 (01.85%) 5.07 17.68 32.11%
Jammed (10) Main Road 44,047 (01.33%) 9.79 15.37 30.72%

Low (1) Motorway 2,029,821 (80.50%) 0.41 83.79 86.86%
Normal (4) Motorway 296,694 (11.77%) 2.11 79.72 80.77%
Increased (7) Motorway 166,481 (06.60%) 4.91 53.78 57.27%
Jammed (10) Motorway 28,643 (01.14%) 8.74 27.42 28.67%

Low (1) Residential 286,654 (93.68%) 0.88 27.04 53.93%
Normal (4) Residential 285 (00.09%) 2.27 13.76 27.85%
Increased (7) Residential 16,218 (05.20%) 5.00 13.26 27.05%
Jammed (10) Residential 3,062 (00.98%) 10.00 3.31 03.36%

Table 6.3 General traffic data statistics

6.1.4 Traffic Data Characterization

Next, we provide the data characterization, starting with the traffic data analy-
sis containing subsections that provide an overview about the traffic statistics and
spatiotemporal visualizations. The second part of this section conducts the same
characterization using the incident data.

6.1.4.1 Traffic Overview

First, we provide different statistics and visualizations, to understand the general
traffic behavior in dependence of certain aspects, like time of the day or the street
type. We group the traffic values into four unique levels, representing low traffic
(0-1), normal traffic (>1-4), increased traffic (>4-7) and traffic jams (>7-10). Fur-
thermore, due to the high amount of different street types that are contained within
the SHP, we provide a grouping of roads on a higher level of granularity: i) Motor-
way: roads with high speed limits (>100 km/h) or none, ii) Main Road: Fast roads
with speed limits from 50 km/h to 100 km/h and iii) Residential: Small roads in a
residential area with a speed limit from 30 km/h to 50 km/h.

The statistic provided in Table 6.3 shows the number of data entries for each traffic
level on different street types, including the average traffic, speed and relative speed
(:= speed/speed limit). Noticeably, there is a similar distribution of traffic for the
different street types, with the highest proportion of entries given in a low traffic
state. However, there is a difference between the distributions related to the different
street types. On main roads, nearly 97% of all data entries represent a low or normal
traffic level, whereas on motorways the amount is just at 92%, showing a higher
proportion of increased or jammed traffic states. The traffic on residential areas is
mainly represented in a low (93.68%) or increased state (5.20%). Furthermore, Table
6.3 depicts the traffic and speed (absolute and relative) in dependence of the current
traffic level. Considering the information about relative speed, there is a strong
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Figure 6.2 Distribution of traffic based on street type and time of the day

variety between the different street types. On a main road, this value decreases
from nearly 70% in a low traffic status to 30% in case of a jammed road. A similar
behavior is given on motorways, although representing higher relative speeds at the
first two levels of traffic. However, in residential areas, the speed reaches a maximum
of 54% and significantly decreases to a value of three percent in a jammed traffic
status. Therefore, the traffic in Bonn is in a low state most of the time (>80% of
all data entries). Higher states of traffic are given in seven percent of all entries,
with the proportion of congestion states representing one percent. This depicts a
realistic behavior, as congestion generally emerges solely during rush hours or in case
of certain incidents. Moreover,Table 6.3 shows a significant reduction of speed for
the high levels of traffic (seven or more), especially in case of the residential areas.
From these numbers we also notice that the average speed on main and residential
roads is close to 50%, resulting in no efficient use of the street with increased fuel
consumption, emissions and waste of time.

Figure 6.2 depicts the distribution of traffic levels over the time of the day, based on
different street types. We define Morning from 05:00-11:59, Afternoon from 12:00-
16:59, Evening from 17:00-20:59 and Night from 21:00-04:59. Noticeably, the highest
proportion of data entries represents a traffic level of 1, but there is a significant
difference in the distribution of traffic levels between the different street types. On
main roads, there is a visible increase of higher traffic states throughout the day,
compared to the night. A similar observation is made on motorways, showing a
difference of 3.1% to 10% on the increased traffic state, from the night compared to
the afternoon. On residential streets, the traffic state is in a level of 0-1 for more
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Figure 6.3 Relation of speed and traffic on different street types

than 90% throughout the complete day. Furthermore, the distribution of traffic is
more equal on residential areas, compared to main roads and motorways, where it
shows a significant change based on the time. Therefore, the traffic level is strongly
influenced by the time of the day and the respective street type, demanding different
traffic strategies based on these parameters.

Next, we analyze the relation between the relative driven speed and the traffic status
for different street types. Figure 6.3 depicts this information, showing the traffic level
on the x-axis, relative speed (solid red line) on the left y-axis and the traffic value
(blue dotted line) on the right y-axis. There is a strong correlation between both
traffic features, with a varying level of dependency according to the different street
types. Therefore, in a residential area, the relative speed shows a strong decrease,
starting at the second traffic level and reaches nearly zero in the state of level 10.
On a main road the speed is decreasing at a much slower rate, resulting in 25% for
the highest levels of traffic. Lastly, the motorways are showing relative speed values
of more than 50% for nearly all different levels of traffic, except for the congestion
state in level 10 which has a relative speed of 25%. This analytical results show the
inverse correlation between this two traffic features, but additionally states that the
level of correlation significantly differs between the depicted street types.

Concluding this general characterization of traffic data, the city demands different
strategies of traffic management for various locations to improve minor problems in
the transportation system.
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6.1.4.2 Spatiotemporal Visualization

Furthermore, we provide an analysis focusing on the spatiotemporal aspects of the
traffic data. Figure 6.4 depicts the data coverage of different street types, in compar-
ison to all existing streets. Furthermore, all covered road segments are highlighted
by their average speed. Therefore, motorways provide a close to perfect coverage
of data, as it is the primary and most important road type used for transportation.
Furthermore, the plot shows that most of the main roads are also covered by our
collected data, however, the proportion is significantly lower compared to the mo-
torways. In contrast, only a very small subset of residential streets is covered by the
data. Furthermore, Figure 6.4 depicts the speed for every road segment covered by
the dataset. Additionally, we provide some statistics about the average speed driven
on each street type: Motorway - 81 km/h, Main Road - 36 km/h and Residential
26 km/h. Overall, the speed driven on a large proportion of highways is high and
close to the limit, with some occasions of orange colored roads representing a speed
of around 60 km/h. Considering the majority of main roads and residential areas,
there is a significant lower speed value, especially close to the center of Bonn. In
conclusion, the aspect of coverage indicates the importance of each road type to
the transportation system. The poor coverage of residential areas can be explained
by the large amount of small, unique street segments. Therefore, equipping each
of those segments in an urban area with traffic sensors results in high cost and is
not profitable, according to the low relevance to the overall transportation system.
The visualization of speed per road helps to identify problematic traffic areas that
require improvement of the traffic to increase the efficiency of transportation.
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Figure 6.5 Spatiotemporal traffic view

Next, Figure 6.5 presents the traffic on multiple times of the day, showing differences
for many areas throughout the day. During the night and evening, the traffic level
is low on all locations, except a few roads located near the city center and highway
parts that show a slightly increased traffic. However, in the morning and afternoon,
multiple road segments show higher traffic values, especially main roads in the center
and a few motorway segments. In conclusion, there is a spatiotemporal dependency
of traffic values, illustrated by the spatially differing change of traffic values over
time. However, the plot shows that on average, most roads in the observed area
show a low traffic value, just reaching maximum values of up to five or six in a few
locations during the day.

6.1.5 Incident Data Characterization

In this section, we provide an extensive analysis of incident data within the discussed
area of Bonn, including four different incident types: Accident, Congestion, Disabled
Vehicle and Road Hazard. Similar to the preceding section, we first discuss some
general statistics related to the observed incidents and further provide a spatiotem-
poral analysis, including an investigation about the effect of single incidents to the
traffic on surrounding areas.
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Incident Type Street Type Entries Dur. (avg.) Dur. (max.)

Accident Main Road 4 (01.48%) 10.00 min 10 min
Accident Motorway 260 (95.94%) 15.92 min 170 min
Accident Residential 7 (02.58%) 25.71 min 120 min

Congestion Main Road 326 (07.37%) 12.98 min 90 min
Congestion Motorway 3892 (88.03%) 19.15 min 730 min
Congestion Residential 203 (04.59%) 11.43 min 50 min

Dis. Vehicle Main Road 9 (02.58%) 10.00 min 10 min
Dis. Vehicle Motorway 328 (93.98%) 15.88 min 210 min
Dis. Vehicle Residential 12 (03.44%) 18.33 min 60 min

Road Hazard Main Road 11 (02.49%) 10.91 min 20 min
Road Hazard Motorway 412 (93.42%) 15.29 min 110 min
Road Hazard Residential 18 (04.08%) 18.33 min 110 min

Table 6.4 General incident data statistics

6.1.5.1 Incident Overview

Table 6.4 shows the amount of data entries, regarding each different type of inci-
dent. Furthermore, the statistic is grouped by street types and contains informa-
tion about their average and maximum duration. Comparing the different incident
types, we notice that the amount of congestion reports surpasses the number of all
other reports. This is a result of the fact, that congestion is a re-occurring event,
generally emerging due to high traffic. Moreover, the majority of reports occurs
on motorways, with a proportion of around 90%. Furthermore, the average and
max duration shows a minor variance between the different street types. However,
the maximum duration significantly differs between the respective type of incident,
reaching up to 730 minutes for a congestion but not more than 210 minutes for the
other types. The average duration of congestion exceeds the duration of the other
types in general, showing a slightly higher duration. However, this is not observable
in residential areas, showing a longer time span of incidents in general, except for
congestion situations. Summarizing the table, the highest proportion of incidents
is given through congestion reports, mainly occurring on motorways and showing a
higher maximum duration compared to the other incidents. Furthermore, we argue
that the data imbalance, which is shown by Table 6.4, may reduce the significance
of the presented duration values, when comparing different incident types, due to an
over-representation of incident values.

The set of bar plots, provided in Figure 6.6, shows the distribution of incidents for
different times of the day, separated by each individual street type. Intuitively, the
majority of incidents does occur during daytime (morning and afternoon) depicted
by the black and red bars. However, there is a noticeable difference regarding the
type of incident, as just a minor proportion of congestion occurs during the night
or evening (≥ 6%). This cannot be reported on the other street types, showing a
wider distribution of each incident throughout the day. This analysis confirms the
trend of incidents having a higher occurrence during daytime but shows that there
is a significant difference between each unique incident type. A more predictable
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incident type, e.g., a congestion, is almost solely reported during daytime, whereas
the unpredictable events occasionally are reported during the night and evening as
well.

Finally, we measure occurrences of incidents based on weather condition and season
of the year. The bar plots in Figure 6.7 show the distribution of incident types
for three different seasons: Winter, Spring and Summer. A main conclusion drawn
from this analysis is made according the ’worse’ types of weather (rain and snow)
being more present in winter. On average 30% of all incidents are reported during
a rainy weather condition and up to seven percent during snow. In contrast to
this, about 90% of incidents, during the spring season, are reported on a clear
weather condition, with an additional 5-10% of rain conditions and just 1-2% on
thunderstorms. A similar observation is made in the summer season, although 11%
of all accidents happen during a thunderstorm, indicating a potential correlation as
none of the other incidents happened on this condition. In general this shows that
there is a minor correlation between the weather and certain types of incidents.

6.1.5.2 Spatiotemporal Visualization

This section shows the occurrence of incidents within a geographical aspect. Figure
6.8 visualizes the density of all incidents in a spatial way, with a unique color scheme
to illustrate the individual street types. As visible, most incidents are occurring on
the motorway areas, mainly at the two main interchanges Bonn-Nord (red circle on
the left) and Bonn-Nordost (red circle on the right), indicated by the blue level of
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density that refers to more than 1,500 entries. Both interchanges serve as a crucial
part of the transportation system, connecting several different motorways that con-
nect the cities of Bonn and Cologne, daily used by many road users. Therefore, this
areas should be considered for potential traffic optimizations, given the significant
higher amount of incident occurrences.

Additionally, Figure 6.9 shows the same information with with the additional facet of
individual incident types. Therefore, each type of incident has a unique distribution
in terms of space, visualized by the minor change in coverage from each respective
density layer. However, the majority of incidents occurs on different motorway
locations, independent on the type of incident.

Finally, we analyze the effects of an incident on the surrounding area. Figure 6.10
visualizes an accident (marked by ’X’), that happened on a motorway at 17:30.
Furthermore, it provides information regarding the traffic level of the surrounding
roads over time. There is a visible increase of traffic on the directly connected areas
surrounding the accident location. The increase starts at 17:20, just before the
incident is reported by the respective source. The condition can be observed for a
total of 30 minutes, slowly going back to a lower traffic state at 17:50. Therefore,
the given accident has an impact on the traffic behavior of many neighboring roads,
especially visible in the time of 17:30 and 17:40. Within this time, a major proportion
of the connected motorways shows a significantly higher traffic value, ultimately
correlating with the observed accident. Conducting this type of analysis on different
incidents shows a variety of different traffic behaviors related to the unique incidents.
The majority of accidents and congestion reports provided a similar behavior as
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Figure 6.10 Incident effect on traffic behavior

shown in Figure 6.10. However, the inspected congestion cases did show a smaller
impact on the surrounding areas in general. This shows the correlation of traffic
features in order to classify incidents based on traffic patterns and motivates the
creation of our presented incident classification model.

This specific analysis concludes the data characterization. We show multiple in-
sights regarding the data availability and information enrichment as a result of the
heterogeneous data fusion. Using the fused dataset, we are able to conduct a variety
of analysis tasks, providing insights on multiple levels of detail for both, traffic and
incident data. We can use this data characterization to provide a better understand-
ing of the traffic behavior on an urban area and further support the development of
applications in the context of ITS.

6.2 Traffic Estimation

This section evaluates the performance of the proposed traffic estimation application.
We start by providing a detailed performance measurement on the model that uses
naive statistics, and continue with the regression approach. Finally, we compare the
performance of both models on two different datasets.

To measure the performance of the designed traffic estimation models, we calculate
a variety of effective and commonly used performance metrics, which are explained
in the following:
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• Coefficient of Determination (R2): The metric is defined by

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

(6.1)

and represents the proportion of variance between the true value y and pre-
dicted value ŷ. It can be used to measure the performance of the proposed
model estimation. The formula calculates the squares of residuals (numera-
tor) and divides it by the total sum of squares (denominator). An optimal
estimation would be represented by R2 = 1, a score of 0 is given to a model
that always predicts the average value of y. The score can also be represented
through a negative value, as the model can be arbitrary worse.

• Mean Absolute Error (MAE): The MAE is an error metric that describes the
sum of absolute errors between the real values and estimations from the model,
with a desired value of 0, defined by:

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| (6.2)

• Root Mean Squared Error (RMSE): The RMSE describes the root of the Mean
Squared Error (MSE), a measurement for the average squared distance between
the estimated values by the model and the real values within the dataset. It
also has a desired value of 0 and is defined by:

RMSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2 (6.3)

6.2.1 Naive Statistical Model

First, we discuss the results of our initial traffic estimation application, based on
naive statistics. Initially, we evaluated the statistical approach using a dataset con-
taining two months of traffic data, comparing the estimation quality on four different
data samples: i) Fused Data with Grouped Regions based on correlation (Fused GR)
ii) Fused Data from a Single Region (Fused SR) iii) Raw Data (RAW) from Traffic
HERE and iv) RAW from Traffic OD.

Figure 6.11 presents four examples that compare the estimation accuracy, using the
different data samples, to the ground truth. Example 1 shows that using Fused
GR (red line) and Fused SR (orange line) provides estimated values close to the
ground truth (black line). This indicates that including data from correlating re-
gions slightly improves the traffic estimation in this case. Moreover, the benefits of
heterogeneous data fusion (red and orange line) suggest a higher accuracy compared
to the samples using raw data (blue and green). Similarly, Example 2 shows that the
fused data achieves the best estimation result with Fused GR and Fused SR being
the same values, due to no available similar regions. The RAW samples are worse,
indicating that the usage of fused data can provide a benefit to the accuracy of the
estimation. The results presented in Example 3 demonstrate an opposite case, where
the data fusion leads to a worse estimation compared to using RAW-HERE. The
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Figure 6.11 Estimations using the naive statistical model

plot shows that the estimation based on RAW-OD is very coarse and has a strong
bias, compared to the ground truth. Fusing the data from OD and HERE improves
the estimation accuracy, but it remains lower compared to using only data from
RAW-HERE. Example 4 shows that all estimated values are close to the ground
truth, with Fused GR achieving the overall best result. In conclusion, both fused
samples have a better accuracy compared to RAW-HERE and especially RAW-OD,
furthermore revealing the benefits of our proposed approach.

Data Sample R2 MAE RMSE
Fused GR -0.11 1.19 1.50
Fused SR -0.14 1.21 1.52
RAW-HERE -0.25 1.31 1.58
RAW-OD -1.36 1.67 2.06

Table 6.5 Performance of the naive statistical model

Table 6.5 shows the evaluation results on all areas. Therefore, using the Fused GR
data sample achieves the overall best performance. It has a minor advantage com-
pared to Fused SR, showing a better R2 score of -0.11, compared to -0.14 and slightly
better error measures. In comparison to RAW-HERE, there is a stronger improve-
ment, achieving a R2 score of -0.25 and slightly higher error metrics. Compared to
using RAW-OD, our approach provided significantly better results, increasing the
R2 value by 1.25 and both error metrics by 0.48 and 0.56 respectively. However, the
overall quality of the presented model was not particularly high, which motivated
us to further develop a regression based model.
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(b) Estimation and real data for traffic (left) and speed (right) on Region B

Figure 6.12 Estimations using the polynomial regression

6.2.2 Polynomial Regression Model

This Section evaluates the traffic estimation using a ML-based polynomial regres-
sion model. The configuration, presented in Table 6.6, is the same as in the naive
statistical approach, but further includes a polynomial degree and a larger set of
input data (nine months). The model can estimate traffic for each of the 181 areas
contained in the dataset, referring to 7,324,198 data entries. The overlap threshold
value for intersecting regions is set to 0.5, and the corresponding thresholds for the
correlating areas are given by 0.25 for DTW and 0.90 for Pearson Correlation. The
regression is based on a polynomial degree of 10.

Total Entries Areas Overlap DTW Thresh. Corr Thresh. Pol. Degree
7,324,198 181 0.5 0.25 0.90 10

Table 6.6 Setup of the traffic estimation model

Figure 6.12 depicts four examples of our proposed traffic estimation for two different
areas. In Figure 6.12 a), the left plot shows the estimated regression line (red)
on the set of training data (green points). We want to mention, that the points
from the train dataset are grouped to 144 points, each representing a mean value,
for better visibility instead of showing >10,000 data points. The blue line depicts
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the test data, representing a real world traffic data observation. Noticeably, the
estimation is showing a high precision on both, traffic and speed data, indicating a
great traffic estimation. The second area depicted in Figure 6.12 b), shows a similar
result, scoring an even higher performance and provides a closer estimation to the
ground truth.

The regression model can be setup using the following parameters: Data feature
(traffic, speed or speed relative), weekday, weather and street type. Furthermore,
we can vary the polynomial degree and train-test-split to achieve an optimal per-
formance. To find the best possible polynomial degree for the underlying regression
model, we conducted a variety of tests with different values for d in range of 1 to 20.
The result of this is presented in Figure 6.13, showing that using a degree of d = 10
achieves the lowest RMSE value and therefore, the highest accuracy. Furthermore,
we use a train-test split with 40% of training and 60% of test data, according to the
performance results depicted in Figure 6.14, showing a minor performance advan-
tage compared to most other combinations of the train-test-split. Moreover, there
is visible decrease in performance when using 70% of training data or more.

Table 6.7 presents the results of a further exploratory investigation, regarding the
best model configuration. First, it shows the performance measures of our model
using the full set of data, for each data feature (first line). In total, the model can
achieve a high R2 score of 0.84, using speed or relative speed, but also performs
good using the traffic data feature. Furthermore, both error measures are low for
each respective data feature, represented by values below 0.10. Furthermore, Table
6.7 evaluates the performance of using different street types and weather conditions,
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comparing it to the general performance (first line), with the green color showing an
improvement, black no change and red a decrease. We also included some indicators
(represented by the arrows and circles), that show the general performance of the
respective set of input data. The model achieves the best performance estimating
traffic on main roads with no specified weather condition, with R2 scores of 0.91 using
the speed data features and 0.81 on traffic. The general performance on motorways
is a bit lower compared to both, main roads and residential areas, reaching an R2

score of up to 0.84, therefore marked by an orange circle. We conduct the same
measurement using a variety of different weather conditions, with the results shown
in the last three rows of the table. Noticeably, the performance is significantly lower
estimating traffic in case of rain, and especially snow, indicated by the red arrow.
This is due to the low amount of traffic observations that happened during rain
or snow, significantly reducing the train dataset. Therefore, the estimation uses
many interpolated data points, instead of real values, reducing the overall quality.
However, the model is still capable of providing an accurate estimation for the clear
weather condition. Based on this exploratory investigation, we argue that the model
achieves a great performance on most input data parameters, however, using separate
models to estimate the traffic based on a specific road type achieves the overall best
results. In contrast, creating a model based on the weather conditions rain and
snowy reduces the quality of our model.

Finally, we evaluate the usage of additional data from correlating areas in the train
dataset. To ensure that we are just considering data from strong correlating areas
at a similar value level, we define the following thresholds for the correlation and
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Street Type Weather Data Feature R2 MAE RMSE
Traffic 0.76 ±0.00 0.07 ±0.00 0.09 ±0.00

All All Speed 0.84 ±0.00 0.06 ±0.00 0.08 ±0.00

Speed (rel.) 0.84 ±0.00 0.06 ±0.00 0.08 ±0.00

Traffic 0.68 −0.08 0.08 +0.01 0.10 +0.01

Motorway All Speed 0.71 −0.13 0.08 +0.02 0.11 +0.03

Speed (rel.) 0.71 −0.13 0.08 +0.02 0.11 +0.03

Traffic 0.81 +0.05 0.06 −0.01 0.08 −0.01

Main Road All Speed 0.91 +0.07 0.05 −0.01 0.07 −0.01

Speed (rel.) 0.91 +0.07 0.05 −0.01 0.07 −0.01

Traffic 0.75 −0.01 0.07 ±0.00 0.10 +0.01

Residential All Speed 0.91 +0.07 0.05 −0.01 0.07 −0.01

Speed (rel.) 0.91 +0.07 0.05 −0.01 0.07 −0.01

Traffic 0.74 −0.02 0.07 ±0.00 0.09 ±0.00

All Clear Speed 0.82 −0.02 0.06 ±0.00 0.09 +0.01

Speed (rel.) 0.82 −0.02 0.06 ±0.00 0.09 +0.01

Traffic 0.55 −0.21 0.08 +0.01 0.11 +0.02

All Rain Speed 0.69 −0.15 0.08 +0.02 0.11 +0.03

Speed (rel.) 0.69 −0.15 0.08 +0.02 0.11 +0.03

Traffic 0.23 −0.53 0.09 +0.02 0.15 +0.06

All Snowy Speed 0.28 −0.56 0.11 +0.05 0.16 +0.08

Speed (rel.) 0.28 −0.56 0.11 +0.05 0.16 +0.08

Table 6.7 Performance of the regression model on various streets and weather conditions

DTW: thcor = 0.90 and thdtw = 0.25. For the naive statistical approach, the usage of
correlation showed minor improvements to the models performance, e.g., increasing
the overall R2 score from -0.14 to -0.11 and reducing the MAE by 0.02. However,
for the regression model we achieve no improvement on using this additional data
from similar areas. In contrast, the approach decreased the overall performance by
five percent on average. This is due to the large size of available data for each area.
Therefore, including more points to the input dataset adds a minor degree of bias
when using the regression model. We argue that the use of data from correlating
areas is beneficial for the naive statistical model on a smaller dataset, but is not
applicable to a regression algorithm used on a large train dataset.

Based on this initial evaluation we conclude that our proposed traffic estimation
approach, based on a polynomial regression, is achieving good results and is useful
to predict the traffic for single areas using different parameters. However, due to
the lack of data on certain weather conditions (e.g., snow) the model performance is
significantly lower, due to the requirement of data interpolation. Furthermore, the
usage of additional data from correlating regions could not benefit the performance
of the model like it did for the naive statistical approach.

6.2.3 Comparison

This section conducts a detailed comparison between the two presented models for
traffic estimation on two different sets of data: i) two months of traffic data (this
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Figure 6.15 Comparison: Statistical model and polynomial regression

is the dataset used on the initial evaluation of the statistical model), from July to
August 2021 and ii) nine months of traffic data, from December 2021 to August 2022

To compare both models, we use a train-test-split of 80-20 and estimate traffic val-
ues on all areas for a single weekday. Figure 6.15 shows a comparison between the
corresponding models on both datasets, evaluating the R2 and MAE scores. We
start by comparing the performance on the initial dataset of two months, showing
a significant performance difference regarding the R2 score. The naive statistical
approach provides an overall score of -0.90, whereas the regression model achieves
a significantly higher score of 0.15. The MAE value is more close for both models,
however, the statistical model shows a slightly better performance. We conclude,
that the polynomial regression outperforms the statistical model, due to the signifi-
cantly better R2 score. Equally, the regression achieves a much better performance,
comparing both models on the nine months dataset. Moreover, we observe that the
ML model could significantly improve the performance on the larger dataset, im-
proving R2 from 0.15 to 0.39 and MAE from 0.43 to 0.26. Similarly, the statistical
approach showed a minor improvement within both metrics.

In conclusion, the presented traffic estimation approach achieved a great performance
using the ML-based regression approach. The naive statistical model is applicable
to estimate the traffic for most areas, with a low overall error and good R2 measure-
ments. We showed that using fused data together with information from correlating
areas could improve the quality of the model. However, the overall performance on
the total set of data is not ideal for this approach, providing an R2 score slightly
below average and high error metrics. Using the more advanced regression model,
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we achieve a much higher overall accuracy and provide a robust traffic estimation
application, reaching an R2 score of up to 0.91 and very low error metrics. While
the usage of additional data from similar regions provided a benefit to the naive
statistical approach, it added a small bias to the regression model, resulting in an
overall minor performance decline.

6.3 Incident Classification

In this section, we provide a detailed evaluation of the proposed incident classifi-
cation. The designed model classifies three different classes of incidents (Accident,
Congestion and Normal), but we are also providing a binary classification (Incident
or No Incident), to compare the performance of both approaches. All results pre-
sented in the next two subsections refer to the multi-class model. The application
utilizes a k-NN algorithm, using two different methods to compare time series and
distributions (DTW and Wasserstein) and is evaluated using a variety of classifica-
tion metrics:

• Confusion Matrix: Represents the instances in an actual class (rows) and
the predicted class (columns), visualizing the amount of correct and wrong
classifications. The results are categorized in the following way:

– True Positives (TP): Test samples correctly classified to their class

– False Positives (FP): Test samples wrongly classified to their class

– False Negatives (FN): Test samples correctly classified to another class

– True Negatives (TN): Test samples wrongly classified to another class

• Accuracy: Represents the proportion of correct classifications to the total num-
ber of cases.

Accuracy =
TP + TN

TP + FP + FN + TN
(6.4)

• Precision: Represents the proportion of test cases that were classified correctly
to the specific class. It should be used in case of the requirement to be very
sure about the classification.

Precision =
TP

TP + FP
(6.5)

• Recall: Represents the proportion of test cases from the actual class that are
classified correctly. It can be used in case of a model that tries to capture as
many correct classifications as possible.

Recall =
TP

TP + FN
(6.6)

• F1 Score: Represents the harmonic mean between precision and recall to indi-
cate the balance of both values. A model can reach a high accuracy but have
a low precision and/or recall at the same time. The F1 score can be used to
identify those cases.

F1 = 2 · Precision · Recall

Precision + Recall
(6.7)
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Figure 6.16 Comparison: Different input strategies

When evaluating the model performance, we are going to discuss all of the presented
metrics. We start by evaluating our different input strategies and validation concept,
concluding the chapter by providing an evaluation of the final binary and multi-class
model and the usage of data sampling techniques.

6.3.1 Input Strategy

First, we compare the model’s performance using input data based on the original
reported start time of each incident, against using the estimated starting point, ob-
tained by iterating over the data. Furthermore, we conduct an evaluation regarding
two different time frames, comparing using data from 90 or 120 minutes prior and
after to the incident start time.

The bar plots shown in Figure 6.16 provide the score of each performance metric
regarding various input datasets. In general, using the 90 minute time interval
achieves the highest overall scores, with an accuracy of 0.86 for DTW and 0.81 for
Wasserstein. For this time interval, we furthermore see an advantage of using the
actual start time, compared to applying our provided estimation. In contrast, the a
larger set of input data, namely 120 minutes before and after the incident start time,
shows a much closer performance between using the original and estimated starting
point. Moreover, applying the Wasserstein metric achieves a better performance
on the 120 minute input intervals, scoring better results than the DTW in case of
the estimated incident start time. In conclusion, the final model uses input data
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Figure 6.17 Example: Biased incident observation

covering a 90 minute time frame prior and after the original reported incident time,
as this provides the overall best results. Using the iterative approach to estimate
a more realistic start point of an incident does not benefit the accuracy of the
model. Moreover, increasing the input time interval to 120 minutes shows a minor
decrease in performance overall, but benefits the model in all test setups that use
the Wasserstein metric, especially when working with the estimated start time.

6.3.2 Incident Validation

Subsequently, we conduct an evaluation on the presented procedure to validate each
incident case. The method filters the data, by removing incident cases that contain
too much noise. An example for this is given in Figure 6.17, representing the traffic
on an accident (red line plots) and a normal situation (black line plots) on the
same location. The first row of plots presents a valid accident, showing a significant
difference between the accident (left) and normal situation (right), with the traffic
reaching a peak value of 10 and gets back to a low value over time. In the second
row, the left plot shows an example for a reported accident that was not validated,
as there is no major change in the traffic behavior within the observed time frame.
We cannot see any indicator of an accident based on the traffic level, comparing
the accident to the normal situation. An input like this adds too much noise to
the model and leads to biased results, explaining the requirement of our proposed
incident validation method.
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Figure 6.18 Comparison: Validated and not validated data

Next, we evaluate the respective performance scores using DTW on an 80-20 train-
test-split, comparing a validated subset against the complete set of input data (not
validated), to measure the benefits of the validation approach. The results of this
evaluation are shown in Figure 6.18, presenting all performance metrics for each data
feature. The model achieves a major performance improvement using the proposed
method to validate and filter the incident cases. Regarding the accuracy, there is
an overall improvement of 29%, with the strongest performance increase of 38.7%,
regarding the incident classification on the traffic data feature. A similar level of
improvement is achieved on all other metrics, with 25% on the precision, 22% on the
recall and 25% on the F1 score. Therefore, our proposed incident validation approach
improves the overall performance by 26%. We conclude that our dataset contains
noisy incident samples that bias the model input leading to a worse performance. By
providing a method to filter the input, removing those cases, we achieve significant
better results on the model.

6.3.3 Model Performance

Finally, we evaluate the classification model using the parameters shown in Table
6.8, which represent the optimal setup, based on our previous discussed results. The
validated dataset contains 1,838 data samples and uses an overlapping threshold
of 50% to identify intersecting traffic regions. Furthermore, we utilize the input
strategy of taking the original reported incident starting point and include data 90
minutes prior and after to that. The k-NN is setup using a total of five neighbors
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Figure 6.19 Binary model performance for each class

(k=5) and a warping window of five regarding the DTW (w.w = 5), as this provided
the overall best results in our conducted experiments. Furthermore, we use SMOTE
oversampling, but the benefits of this will be discussed in the following.

Data Entries Overlap Start Point Time Valid. k w.w. Sampling
1,838 0.5 Original 90 min X 5 5 SMOTE

Table 6.8 Setup of the incident classification model

First, we evaluate the performance of our model providing a binary classification,
to detect any case of incident or a normal situation. Overall, the model achieves
an accuracy of 90% and moreover, Figure 6.19 presents the performance metrics
for each class using the traffic data feature. Therefore, the model achieves high
scores of around 90% for all data classes in every metric, with DTW showing a
minor advantage compared to applying the Wasserstein metric. Furthermore, we
see a balanced set of test data, with an equal amount of Incident and No Incident
data samples. We conclude that the model achieves a great performance for the
binary classification of incidents. To increase the complexity of the problem, the
model is further tested by classifying multiple types of incidents, namely Accident,
Congestion and No Incident.

In general, the classification of different incident classes scores an accuracy of 86%,
presenting a minor decrease compared to the binary classification. However, when
considering the performance of each individual class, presented in Figure 6.20, we
notice major differences between the classes. Therefore, the precision, presented in
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Figure 6.20 Model performance for each class

the upper left plot, shows a lower score for the accident class compared to the others,
especially using the Wasserstein metric. Furthermore, the recall score of accidents is
significantly lower, which explains the poor F1 score. Both other data classes achieve
high scores, comparable to the ones presented from the binary classification model.
A possible explanation for this observation is given by considering the number of
test samples, showing major differences between the classes, indicating an imbalance
of our input dataset. Therefore, only 12% of all test samples represent an accident,
with 48% congestion and 40% normal samples respectively. In conclusion, the multi-
class model shows a worse performance compared to the binary classification, which
is a result of the imbalanced input dataset, showing a major under-representation
of accident data cases. The presented results utilize an oversampling technique
that could reduced the severity of this problem. In the following, we provide an
extensive evaluation about such data sampling methods. The problem of under-
represented samples from a certain data class is hard to solve, but we use a variety
of sampling techniques to reduce the problem severity, like Random Oversampling,
SMOTE Oversampling and Nearmiss Undersampling. The final results of the model,
just presented, show the classification using SMOTE Oversampling, as a result of
the following discussion.

Figure 6.21 provides a comparison of precision and F1 score, regarding the unique
data classes and shows significant differences using various sampling techniques.
With no sampling on the data, the model achieves the best results regarding the
classes Congestion and Normal, but provides a poor score in case of the classified
accidents. Using either of the two discussed oversampling techniques shows that the
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Figure 6.21 Precision and F1 Score for different sampling methods

total precision of the model can be increased from 72% to around 84%, and signifi-
cantly improves the value for accident classification from 35% to 77%. A drawback
of using oversampling is the minor reduction of precision regarding both other data
classes. However, overall it provides a substantial benefit to the performance of the
model. Furthermore, the F1 score shows an improvement for all data classes us-
ing the oversampling techniques. In case of the provided undersampling technique,
we see a minor improvement of the precision, however, the improvement is signif-
icantly lower, compared to using oversampling. Furthermore, the precision scores
of both other data classes are reduced, resulting in a lower total precision score of
59%. Equally, the F1 score is drastically reduced within all data classes using the
undersampling method.

The benefit of oversampling is furthermore shown in Figure 6.22, depicting the num-
ber of data samples within the train and test dataset. The first row of bar plots
shows a significantly imbalanced train dataset, when using no sampling method. It
contains 112 different accident cases, which refers to 7.5% of all samples. Using
one of the discussed oversampling techniques generates more samples of all under-
represented classes, resulting in an equal distribution of 746 samples for each class.
This increases the total number of data samples from 1,488 to 2,238. Using the larger
set of training data has a positive effect on the quality of the model. In contrast to
this, undersampling selects the class with the lowest number of data samples and
reduces the sample size from all other classes accordingly. This causes a significant
reduction of the train dataset size, containing 112 samples for each class and ulti-
mately results in a bad performance. Moreover, the set of bar plots in the second
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Figure 6.22 Number of train and test data samples for different sampling methods

row of Figure 6.22 visualizes the size of the test dataset for each sampling technique.
It is observable, that, while not providing full balance to the test dataset, using
oversampling results in a much more balanced set of data classes.

Finally, we evaluated a combination of both sampling approaches, first partially re-
ducing the amount of over-represented data samples and then using SMOTE Over-
sampling. Therefore, we conducted an experiment, taking a subset of congestion
and normal data samples and measured the performance of each data class accord-
ingly. Figure 6.23 shows the scores of each data class for multiple subsets including
different amounts of congestion and normal data samples. Focusing on the perfor-
mance of accident data samples, we notice that using a larger amount of congestion
and normal samples reduces the recall score significantly. From 0.77 when using a
subset of 20% congestion and normal cases from the total data samples, to 0.46 in
case of using 80% of the data samples. This also influences the F1 score, showing
a similar behavior. However, the precision score shows minor improvements when
increasing the amount of congestion and normal samples, leading to an imbalanced
set of data as we noticed before. Based on this observation we can manually reduce
the imbalance of the dataset, to improve the performance of each class. A setup
using 20% of congestion and normal samples refers to 111 accident, 126 congestion
and 138 normal class data entries in the train dataset, before oversampling. This
model provides a more balanced performance, showing values of 80% for all metrics:
Accuracy, Precision, Recall and F1 Score. Moreover, the performance of each class
is much closer compared to results of the imbalanced input data.
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Figure 6.23 Model performance for subsets of over-represented data classes

In conclusion, the performance of our model is great on the binary classification
of an incident situation, reaching an accuracy of 90%. Increasing the complexity,
by classifying three different types of incidents, reduced the accuracy to 86% but
furthermore showed a worse performance for the classification of accident cases, due
to an imbalanced set of input data. We improve this behavior by using various
sampling techniques and also manually balancing the classes within the set of input
data. On a balanced dataset, the model shows an accuracy of 80% for all cases, which
is a good result, however, a better way to balance the data is given by collecting
more accident cases. Moreover, the Wasserstein metric achieved a marginally lower
performance in general, but in certain cases provides an advantage compared to
DTW. Overall, we provide a robust incident classification based on heterogeneous
data fusion, capable of detecting various types of incidents derived from different
traffic data patterns.
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Conclusion

This thesis provided a traffic model composed by a traffic estimation and an incident
classification that combines the collection and fusion of heterogeneous data. The goal
was to introduce a framework for heterogeneous data fusion and utilize the collected
information to support a robust implementation of the model.

We started with the hypothesis that a traffic model based on heterogeneous data
fusion is more likely to be robust and reliable in the estimation of traffic and classi-
fication of incidents. Introducing Data Fusion on Intelligent Transportation System
(DataFITS), we provided a solution to collect and combine heterogeneous data in
a spatiotemporal manner, improving the amount and quality of information. The
proposed framework uses the map matching technique and is extendable in terms of
supported data types and sources.

Furthermore, we designed the traffic estimation application based on a naive sta-
tistical approach and a ML-based approach, using a polynomial regression. The
incident classification combined incident- and traffic-related information to classify
traffic patterns in a binary way (detect incidents) and categorize them to three
different types of incident.

We evaluated our proposed traffic model, by conducting an extensive data analysis
on the information provided by DataFITS and measured the performance of both
data applications. The data fusion showed a significant enrichment of information,
improving the amount of covered roads by 137% and fusing data from multiple
sources on 40% of all streets. Based on the enriched information, we could provide a
detailed data characterization, that can be used to detect important aspects of the
traffic behavior within an urban area. To evaluate the traffic estimation application,
we measured the performance of both provided models. The naive statistical ap-
proach showed good estimation results on several areas, but only provided average
results on the complete set of areas, with an average R2 value of -0.11 and error
metrics above 1. In contrast, the polynomial regression approach, achieved a sig-
nificantly better performance, scoring an R2 value of up to 0.91, MAE of 0.05 and
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RMSE of 0.07. However, we were not able to further improve this results by using
data from correlating areas, as this reduced the performance by 5% on average.

Finally, the proposed incident classification approach achieved a high accuracy of
90% on the binary classification of incidents. Solving the more complex task of
performing a classification to multiple types of incidents, the model accuracy got re-
duced to 86% but also showed significant differences between the performance of each
class. More precisely, the classification of accidents showed a poor performance, due
to the under-representation of respective samples in a general imbalanced dataset.
This problem could be reduced by oversampling the train dataset, creating a more
balanced representation of the data. Using a balanced dataset showed an accuracy
of 80% for each data class which denoted a good result of the model. Furthermore,
we provided an approach to validate each incident case, removing data samples with
too much noise, which improved the model’s performance by 29% on average.

7.1 Publications

The publications and contributions related to the present thesis are as follows:

• Zißner, P., Rettore, P. H. L., Santos, B. P., Lopes, R. R. F., and
Sevenich, P. Road traffic density estimation based on heterogeneous data
fusion. In 2022 IEEE Symposium on Computers and Communications (ISCC)
(2022), pp. 1–6

• Zißner, P., Rettore, P. H. L., Loevenich, J., and Lopes, R. R. F. A
data fusion framework supporting urban military operations. Poster presented
at 2022 International Conference on Military Communication and Information
Systems (ICMCIS), Udine, Italy, 2022

7.2 Future Work

The proposed solution provides a complete traffic model, covering all steps from
data collection, processing and application, showing the benefits of using data fusion
within the context of ITS. However, we argue that there are further possibilities to
improve the model and want to motivate some aspects that could be investigated in
the future.

First, we consider the implementation of DataFITS on a database structure, instead
of processing a set of csv files. We can store and organize the complete amount of
data, making it accessible to different applications, by using a database. Within this
context, we are also planning on adding a real-time processing of the data, which
can be implemented on top of the database structure.

Moreover, we plan to improve the existing data characterization and proposed appli-
cations. The available data offers a lot of different opportunities for analysis, which
can be conducted in the future to increase the knowledge about the traffic behav-
ior. Furthermore, we can improve the traffic estimation application, by including
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the incident information to the existing model and further investigate the correla-
tion between this two data types. We could utilize a combination of both presented
data applications, to predict the future status of traffic and detect certain types of
incidents based on the estimation.

Finally, we are inspired to develop an application to solve the path planning problem,
using the heterogeneous fused data. The information of traffic and incidents can
provide an optimal path suggestion, dependent on the current situation of the road
network. This type of application can be used in a civilian, but also military context,
further supporting emergency rescue operations.
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