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Abstract

Tactical Networks (TNs) support exchange of information among it’s users such as
dismounted soldiers, convoys, command and control, medical team etc., to accom-
plish mission oriented task. These networks are limited by low bandwidth, high
latency and constraints of network devices operating in these networks like bat-
tery, storage and computational power. Moreover, these networks are composed of
heterogeneous radio link characteristics varying in range and frequencies such as
High Frequency (HF), Very High Frequency (VHF), Ultra High Frequency (UHF)
and Satellite Communications (SatCom). During a certain operational context,
these networks experience a dynamic change in network conditions as well as data
exchange. Ensuring End-to-End (E2E) Quality-of-Service (QoS) of data in these
networks become a daunting task considering the ever-changing communication sce-
nario. The traditional networking devices used in these networks offers very little
flexibility and complexity in ensuring QoS of data due to coupled control and data
functions within these devices. With the emergence of new computer networking
concepts such as Software-Defined Networking (SDN) in which the control functions
are de-coupled from the forwarding functions of the network devices, we have a new
opportunity to re-design the QoS control in TNs using SDN paradigm. Motivated by
the features offered by SDN, in this thesis we introduce a mechanism to adaptively
ensure QoS for user data flow in heterogeneous TNs by leveraging SDN paradigm.
We start with a hypothesis that an application running on the northbound inter-
face of a SDN controller can support the management of unreliable radio links at
the edge of tactical networks. Thus, we developed applications to support adaptive
shaping of user data flows over data rates supported by VHF, UHF and SatCom
radios, and to ensure the dropping of expired messages. We also introduce a hybrid
scheduling, composed of priority and fairness based scheduling mechanisms for these
data flows using Linux Queuing Disciplines (Qdiscs). The goal is to differentiate IP
packets from different command and control services. Our hypothesis was verified
with experiments using four classes of messages with different QoS requirements,
such as priority, reliability, and time of expire. Experimental results in an emulated
network suggest that our solution can differentiate data-flows in a heterogeneous
tactical network while ensuring QoS requirements.
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1
Introduction

Tactical Networks (TNs) are heterogeneous, mobile ad hoc networks ensuring End-
to-End (E2E) connectivity between nodes in the battlefield [24]. TNs consist of
radio communication links with different characteristics in terms of network capacity,
range of coverage and high latency. Current heterogeneous TNs support a wide range
of radio communication systems such as High Frequency (HF), Very High Frequency
(VHF), Ultra High Frequency (UHF) and Satellite Communications (SatCom) [40].
As the nodes move, the characteristics of these communication systems change,
increasing the complexity of data delivery among them. To maximize the data
delivery between nodes in a highly dynamic environment, resource efficient routing
techniques has to be employed, maximizing the utilization of network resources while
ensuring Quality-of-Service (QoS) of the data being delivered [48].

Supporting E2E QoS of data in TNs is crucial because of the low capacity of the
links and frequently the users would like to send and receive more data than the
network can handle. If QoS is not applied, it can influence network congestion re-
sulting in packet delay and loss. When the network capacity is low, it is of utmost
importance that the mission-critical traffic is prioritized by the network at the ex-
pense of less important ones [40]. Therefore, the system needs to support different
QoS requirements for traffic classes over a tactical heterogeneous network by means
of classification and prioritization of flows, and the ability to drop low priority flows
when the network approaches congestion and thus maintain fair QoS for high priority
traffic flows.

A modern Tactical Network (TN) might consist of multiple mobile tactical units
forming a network of unpredictable mobility resulting in rapid topology changes
with the nodes joining and leaving the network on a random basis, where link ca-
pacities vary; both in time and per-link characteristics. Due to this ever-changing
network scenario, network control and management becomes a complex problem, re-
quiring rapid reconfiguration through a resilient control plane since TNs have strong
focus on robustness and network utilization. Recent literature [30] suggests that
Software-Defined Networking (SDN) is a promising solution since it provides the
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potential for highly configurable, automated networks by separating the control and
forwarding functions of network devices. Because of this separation, network con-
trol is directly programmable enabling centralized (logically) network intelligence
in software-based controllers, and network hardware devices becoming simple for-
warding devices. Since TNs are migrating more towards software and virtualization
based solutions, QoS mechanisms in a military-context are being re-designed using
SDN paradigm.

In recent years, researchers have explored the potentials of leveraging SDN to address
service differentiation, traffic management, and network dynamics at the edge of
tactical networks [42, 46, 47, 50]. The features of SDN concept is appealing since
it offers significant advantages over conventional networks in tactical networks such
as: (i) simplifying the administrative tasks in monitoring and controlling network
traffic; (ii) flexible routing mechanism which applies to per traffic flow, based on
packet header attributes rather than depending only on destination IP and MAC
address or in combination with TCP/UDP port numbers as in conventional networks;
(iii) lower complexity and flexibility in network adaption mechanisms since the SDN
controllers have visibility of the whole network unlike conventional networking.

1.1 Problem Description

Dismounted soldiers, convoys, medical team along with Command and Control (C2)
communicate among themselves with a set of C2 services while representing as nodes
in a tactical network. The magnitude of user behaviour within this network depends
on unpredictable operational context like warfare, the conduct of combat, evacua-
tion and disaster relief. They generate data without knowing the underlying network
conditions. The users forming this network are often limited by infrastructure-less
communication environment with connectivity limitation and self configuration char-
acteristics due to technical and physical reasons. While operating within a certain
operational context, they experience dynamic network conditions across asymmetric
link characteristics resulting in variable packet loss and changes in link data rate.

Considering the challenges in ensuring optimal data delivery among the nodes in
these ever-changing network conditions, several studies [20, 29, 32, 36–39, 49] have
explored issues in provisioning QoS in TNs. With limited bandwidth and high
latency for traffic flows, service differentiation and QoS of these services become
important attributes to address, in any tactical scenario. There must be a mechanism
to ensure mission-critical data to get priority in network resources when the resources
are scare, thereby reducing the packet loss incurred by higher-priority flows when
compared to low-priority flows. Also using this mechanism, traffic flows requiring
higher bandwidth should be routed through radio link offering sufficient bandwidth
towards the same destination. And this mechanism should be implemented with
minimal human intervention, in other words the QoS mechanism should be adaptive
to the changes in network conditions.

Network devices in traditional TNs couples together control and data plane func-
tions. The control plane within these devices, in the nodes, operate autonomously.
This provides very little flexibility and complexity to configure the heterogeneity
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in network devices, since control and data planes are vertically integrated. Re-
configuring or updating these network devices could be a time consuming and tedious
process for network administrators considering different types of network devices re-
quiring them to take offline, leading to the loss of connectivity in network segments.
Moreover, these network devices would consist of vendor specific operating system,
applications and protocols which hinders the development of new network services.

However, new paradigm in computer networking such as SDN separates network
control from forwarding functions of the network devices, where the network control
is moved to a central entity called SDN controller. The controller communicates
over a vendor-neutral protocol with networking devices, thereby network devices
can remain simple forwarding devices and offer interfaces to the higher layers. Thus,
network control becomes directly programmable in a more convenient and vendor
independent way, accelerating the innovation and development of new network ser-
vices. SDN in Tactical Networks (TNs) opens up for moving the enforcement of
policy management and QoS control from a service application oriented control
plane to network oriented control plane [27] providing granular control over data
flows and flexibility throughout the network.

1.2 Research question

Based on the previous discussions on challenges of ensuring Quality-of-Service (QoS)
requirements of user data flow in resource constrained heterogeneous tactical net-
works, and inspired by the features supported by Software-Defined Networking
(SDN) paradigm, the purpose of this thesis is to study and validate:

• How SDN could be used to enforce QoS requirements in tactical networks?

– By leveraging SDN, how to shape the traffic to suit the present network
capacities over heterogeneous networks considering constant link changes?

– Moreover, how to drop expired IP packets and prioritize data flow?

1.3 Hypothesis

The thesis began with a research on SDN controller capabilities in supporting ef-
ficient management of data over unreliable radio communication links at the edge
of TNs to meet stringent and varying QoS requirements. Therefore, we start with
a hypothesis that the SDN controller could be used as a tool for monitoring and
controlling traffic in a dynamic tactical environment. Network applications running
on top of this SDN controller could be utilized in order to differentiate distinct Com-
mand and Control (C2) services, ensure QoS requirements for these services, and
dynamically shape the data flow across heterogeneous link depending on the network
conditions.
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1.4 Objectives

The main objective of this thesis is to explore how SDN could be leveraged in ad-
dressing QoS requirements for user data flow in ever-changing network conditions
experienced in heterogeneous tactical networks. As a proof-of-concept, a QoS frame-
work based on SDN concept was developed to ensure QoS requirements of these data
flows in a tactical communication scenario. Depending on the network capacities,
adaptively serve these QoS requirements within the provisioned framework. SDN
capabilities and constraints towards development of this framework is explored and
validated within a SDN emulation platform. Therefore, the objective of this thesis
work is formulated with the following specific goals:

• To study related works in provisioning QoS of user data flow in Tactical Net-
works (TNs), both in traditional as well as SDN based TNs. Study their short-
comings and potential enhancements. Find works related to contributions of
SDN towards QoS management.

• To emulate generation of messages from a set of Command and Control (C2)
services within a SDN emulation platform, depicting communication between
two radios over heterogeneous links.

• To study and implement traffic scheduling mechanisms available within Linux
environment to enforce IP differentiation for QoS-constrained data flows from
C2 services.

• To shape the data flow with respect to the nominal data rate supported by
the heterogeneous radio communication links using Linux Queuing Disciplines
(Qdiscs).

• Develop a network application to adaptively shape the data flow depending on
the network bandwidth using features supported by OpenFlow switch.

• The proposed QoS framework should be validated by a network topology de-
picting a minimal communication scenario in a tactical network, deployed
within a SDN emulation platform.

1.5 Contributions

During this master thesis, it was investigated how QoS requirements for user data
flow could be enforced using the features supported by OpenFlow switch and SDN
controller, together with Linux Queuing Disciplines (Qdiscs). MGEN traffic gen-
erator was used to emulate five exemplary Command and Control (C2) services
with different ‘Priority’ in form of Type-of-Service (ToS) bits set in the header of
an IPV4 packet. Using Qdiscs, ‘Priority’ QoS requirement was ensured for these
distinct services. A hybrid traffic scheduling mechanism was introduced using En-
hanced Transmission Selection (ETS) Qdisc, merging the functionalities of priority
and fairness based scheduling mechanisms. Hierarchy Token Bucket (HTB) Qdisc
was used to emulate the data rates supported by different radio communication
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technologies and to shape the data flow according to the emulated data rate. Using
custom Representational State Transfer (REST) applications running on the north-
bound interface of the SDN controller, flow rules within the flow tables of OpenFlow
switch were configured to differentiate the traffic flows from distinct C2 services and
‘Time-of-Expiry (ToE)’ QoS requirement was provisioned for these services. Simi-
larly, using a REST application, meter table of the OpenFlow switch was configured
with entries of data rates supported by a VHF, UHF and SatCom radio modula-
tions. And by assuming that a network application running on the SDN controller
should have access to the information on the current data rate of the radio interface
in use, a proof-of-concept was developed by serving the information about the data
rate at these interfaces to a REST application by Remote Procedure Calls (RPC).
Based on the data rate in use at these interfaces, the REST application adaptively
shaped the data flow at OpenFlow switch by directing the flow towards appropriate
meter entries in it. Drawback of this adaptive shaping mechanism was investigated
along with the suggestion for improvements. The proposed QoS framework was im-
plemented and validated within the Mininet [28] emulation platform by a minimal
network topology depicting the heterogeneous tactical network scenario.

1.6 Thesis structure

The structure of this thesis text is as follows. Chapter 2 briefly introduces hetero-
geneity in tactical networks followed by the description of SDN architecture and
concluded by the discussion on related studies in ensuring QoS in tactical networks
by both traditional as well as SDN paradigm. Chapter 3 describes the design and
implementation of our adaptive QoS framework on a network topology within a SDN
emulation platform. Chapter 4 discusses the experimental results of provisioning this
framework in ensuring ‘Priority’ and ‘Time-of-Expiry (ToE)’ QoS requirement for
user data flows in a tactical network. Chapter 5 finalizes this thesis by presenting
the conclusion and future work while listing our publications related to this thesis.
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2
Background

This chapter introduces the fundamental concept of Software-Defined Networking
(SDN) and Quality-of-Service (QoS), required to understand the work presented
in this thesis. The chapter starts with a brief introduction to tactical networks
followed by the description of SDN architecture and components of OpenFlow switch,
serves the foundation for understanding the SDN based QoS framework presented
in chapter 3. This chapter is concluded by discussing some of the related studies in
ensuring QoS in tactical networks using traditional as well as SDN paradigm.

2.1 Tactical Networks

Tactical Networks (TNs) are heterogeneous, mobile ad hoc networks (MANETs)
hosting critical information systems for communication purposes in the battlefield. It
facilitate information sharing among the users to accomplish mission-oriented tasks.
It also enables the C2 system’s capabilities for network-centric warfare [18] using
robust radio links across a contested region. The nodes forming TENs are agile,
highly mobile, and inevitably heterogeneous with varying channel characteristics,
including range and frequency such as HF, VHF, UHF, SatCom, sensor networks
and Unmanned Aerial Vehicles (UAVs) [40]. The nodes which form TENs usually
operate in harsh environments with a possibility of frequent link outages. Link
outage leads to the loss of connectivity among the nodes forming TENs, resulting in
data transmission timeouts and routing failures. Due to these reasons, TENs require
rapid reconfiguration and recovery of network topology through a resilient control
plane. Recent literature [30] suggests that Software Defined Networking (SDN) is
a promising solution since it provides the possibility of configurable, automated
networks by separating the control and forwarding functions of network devices.
Furthermore, by leveraging the concept of SDN, previous investigations [17, 19] have
shown how to handle link failures using one of the two main approaches, proactive
and reactive.
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2.2 Software-Defined Networking (SDN)

Open Networking Foundation (ONF) defined SDN [15] as an architecture that sep-
arates the control and forwarding functions of network devices, such as routers
and switches through a process of abstraction. Network control becomes fully pro-
grammable because of this de-coupling and moved to a logically centralized software
based SDN controller, at a layer above the data plane. The controller could be used
to consistently monitor the data flow through the network devices, gain statistical
information using which the behaviour of individual network devices can be altered
in real-time. As a result of this, network devices become simple forwarding elements
through which the packets will be forwarded to other network devices as per the
rules defined by the SDN controller. This reduces the complexity of adding, replac-
ing and upgrading the network devices, thereby adding flexibility and scalability in
network control.

App App App

SDN Controller Software
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Network
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Network
Device
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Figure 2.1 Software-Defined Networking (SDN) Architecture proposed by ONF [15]

Figure 2.1 shows the basic SDN architecture proposed by ONF. The lowest level
of abstraction consists of hardware network forwarding devices (switches, routers,
load balancers etc.,) in the data plane. As per the architecture, network control
functions has been removed from these devices and abstracted within a software
based controller running on any server. All the functionalities of a control plane in a
network device will be implemented in this controller. A layer above this controller
lies application plane consisting of network applications using which the end users
will manage the underlying forwarding devices. The SDN controller exposes it’s
north-bound interface to develop business and network applications. Different SDN
controllers can have their own north-bound interfaces since there is no de-facto in-
terface because of the diverse nature of applications built using this interface. These
applications communicate to the hardware devices using south-bound interface ex-
posed by the SDN controller. Unlike north-bound interface, OpenFlow protocol [41]
is widely accepted as de-facto standard south-bound interface. In recent years, there
is surge in number of vendors manufacturing network devices supporting OpenFlow
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protocol. In addition to this, software switches (or virtual switches) such as Open
vSwitch (OVS) supports OpenFlow configuration protocols such as Open vSwitch
Database (OVSDB) [44] protocol to manage it’s network accessible database sys-
tem. In addition to these two interfaces, East-West interface provides an interface
for logically distributed control plane allowing SDN controllers to exchange notifica-
tions as well as services. This interface is still in exploratory phase in the scientific
community.

2.2.1 OpenFlow Software Switch Architecture

Most commonly used OpenFlow switches such as Open vSwitch (OVS) [8] consists
of one or more secure OpenFlow channels to communicate with one or more SDN
controllers and a datapath. As shown in Figure 2.2, an OVS architecture consists of
flow table, meter table, group table and queues on the egress port as part of the data
path in the switch, where packet processing pipeline takes place. A typical packet
processing pipeline in the data path of an OVS consists of (1) receiving packets on
the input port (2) filtering them based on packet header fields in a flow table (3)
executing a list of actions for matched packets including additional methods of for-
warding (using group table), rate limiting (using meter table) and forwarding packets
to relevant output port(s) or dropping the packet. Using applications running on
the north-bound interface of a SDN controller, flow, group, and meter entries can
be inserted into flow, group and meter tables respectively using OpenFlow protocol
through the south-bound interface of the SDN controller. Using the same interface,
queues on the egress port of an OVS can be configured using OVSDB [44] protocol.

Flow table n

Flow table 1

Flow entry

Flow table 0
Meter table

Execute
Action
Set

Group table
Queue 

Configuration

Input
Port

Output
Port

OpenFlow Channel OpenFlow
Configuration

Channel
(OF-Config, OVSDB)

Drop

Packet Processing
Pipeline

Figure 2.2 Open vSwitch (OVS) Architecture

An OVS can consist of one or more flow tables depending on the data pipeline
design [45]. Each of these flow tables consist of one or more flow rules defining the
forwarding policy for a particular flow. Table 2.1 lists the components of a flow
entry. Each flow entry can be given a priority using ‘Priority’ field. The values
for ‘Priority’ can range from 0 to 65535. Within the flow table, packets will be
first tried to match with the flow rule having the highest priority. If the packets do
not match, then lower priority flow rules will be used to match the packet header
fields until all the rules exhaust. For example, later in Chapter 3, Table 3.2 lists
the flow entries used by the mechanism introduced in the present thesis. ‘Match
Fields’ of the flow entry provides the filters to match the packet header attributes
such as IPV4 and Ethernet addresses, input port, IP DSCP values etc., Once all
the filters within this field are satisfied, a set of actions will be performed on the
matched packets, as specified in the ‘Instructions’ field. The set of actions could
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Priority
Match

Cookie Duration
Idle Hard

Instructions
Packet Byte

Fields Timeout Timeout Count Count

Table 2.1 Components of a flow entry in a flow table of an OVS

consist of forwarding the packet to other flow table or group table having further
instructions of forwarding, and shaping the flow by directing the packets towards
meter table through relevant output port or to drop the packet by specifying empty
set of actions. ‘Cookie’ field consist of a 64 bit number used by SDN controller to
add, modify and delete the flow entries. Two types of timeouts are specified for the
flow entries i.e ‘Idle Timeout’ and ‘Hard Timeout’. Timeout value (in seconds) of
‘Idle Timeout’ specifies how long the flow rule can exist within the switch without
matching any packets. Value in ‘Hard Timeout’ specifies the maximum time, the
flow rule can reside within the switch regardless of the number of packets matching
to it. When either of the timeout expires, the switch evicts the flow rule. ‘Duration’
field specifies the time since the flow rule was inserted, in seconds. ‘Packet Count’
and ‘Byte Count’ field specifies the number of packets matched and the amount of
bytes through the flow rule, respectively.

Group Table was introduced in OpenFlow 1.1 version to perform complex opera-
tions on packets that cannot be defined using a flow table alone. Operations such
as flooding, load-balancing, sniffing and port mirroring could be performed using
group table. Table 2.2 lists the components of a group entry in a group table of
an OVS. Each entry in the group table is identified by a unique ‘Group Identifier’,
while ‘Group Type’ specifies the type of group the entry belongs to. One of the
four types of group i.e ALL, SELECT, INDIRECT and FAST-FAILOVER can be
specified for an entry. ‘Action Buckets’ consist of one or more buckets specifying
the set of actions to be performed on the matched packets, depending on the group
type. By defining the group type to ALL, the matched packets could be duplicated
and forwarded to all the buckets within the group entry to perform distinct actions
on the packets. By defining the group type to SELECT, the matched packets will
be directed to a single bucket among a list of buckets, in a round-robin order. The
buckets could be given certain weight to select particular bucket, often. When the
group type is specified as INDIRECT, only one bucket will be selected each time for
the matched packets. FAST-FAILOVER group type executes the first live bucket in
the group which is associated with a live egress port. ‘Counter’ field maintains the
number of packets going through the particular group entry.

Group Identifier Group Type Counters Action Buckets

Table 2.2 Components of a group entry in a group table of an OVS

Meter Table feature was introduced in OpenFlow protocol version 1.3 . A meter
table consists of meters, defining the rate at which the flow has to be shaped. Meters
are associated with the flows rather than egress ports of the switch. Flow entries
in the flow table are assigned specific meters through which the packets matching
the flow rule has to go through before being forwarded to the output ports. A flow
is not required to be attached to a meter entry, it is up to the developer to specify
which flows, or type of flows that should be attached to a meter entry and passed
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through the meters. As listed in Table 2.3 a meter entry in the meter table consists
of two main components:

• Meter Identifier (Meter ID): The Meter ID field consists of a 32-bit un-
signed integer uniquely identifying the meter entry. The Meter IDs are used
to attach to the flow entries in the flow table as part of the action set for the
flows.

• Meter Bands: Meter bands specify the rate at which packets have to be
shaped. The rate could be specified in terms of either kilobits per second
(kbps) or packets per second (pktps) using ‘Flags’ field. Within this meter
band, we can specify what action to be performed when the packets arrive at
a rate higher than the specified rate of the band, by specifying the ‘Type’ of
the band. Two kinds of actions could be performed: (i) DROP: By specifying
the drop action, switch drops the packets if the current flow rate exceeds the
meter band rate. (ii) DSCP REMARK: This action is used to implement
DiffServ. The DSCP value of the packets which exceeds the defined meter
band rate will be decreased by a magnitude of ‘1’. For example, if the meter
band is specified to shape the data rate at 240 kbps, and the packets from
a message having DSCP value ‘30’ arrive at 300 kbps to this band, then the
DSCP value of all the packets exceeding 240 kbps will be remarked to next
decreasing value i.e ‘28’, according to the values described in RFC 2475 [13].
Even though OpenFlow protocol let us specify ‘DSCP REMARK’ action for
the meter bands, Open vSwitch has not yet implemented this functionality in
it’s latest release versioned 2.15.90 .

Meter Identifier
Bands

Flags

Type Rate

Table 2.3 Components of a meter entry in a meter table of an OVS

2.2.2 SDN Controller

In this section we discuss and compare some of the open source SDN controllers
being used in the research and industrial community. SDN controller acts as an in-
termediary between applications connected through it’s north-bound interface and
network devices connected through it’s south-bound interface. The controller soft-
ware is dubbed as the network operating system within the SDN concept. Table 2.4
lists some of the widely used open source SDN controllers. Controllers differ in the
programming language of their implementation, they differ in support for OpenFlow
protocol versions and OpenFlow configuration protocols such as OF-CONFIG and
OVSDB. Some of them are in active development while others are hardly maintained.
In our quest to find suitable controller which is actively maintained while supporting
recent OpenFlow version and configuration protocols, we shortlisted Ryu [14] and
OpenDaylight SDN controllers to be used in our QoS framework. Since we chose
open source software switch i.e Open vSwitch (OVS) within our framework, support-
ing it’s OVSDB configuration protocol became the deciding factor to choose between
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Controller Description
Language of

Active
OpenFlow

Developers
Implementation version

Ryu [14]

Limited support to NETCONF and

Python Yes 1.5 NTT
OF-CONFIG protocols but extensively

supports OVSDB through
OVSDB manager library

POX [10]

Gained popularity in the initial days

Python No 1.1
Independentof OpenFlow research but hardly

Contributors
maintained nowadays. Does not support

REST north-bound interface

OpenDaylight [9]
Supports both OF-CONFIG and

Java Yes 1.3
Linux

OVSDB protocols OpenFlow configuration Foundation
protocols but does not support Networking

recent OpenFlow versions

Floodlight [11]
Does not support neither OVSDB nor

Java Yes 1.4
Big Switch

OF-CONFIG protocols Networks

Table 2.4 Comparison of popular open source SDN controllers

the two controllers. Even though OpenDaylight supports OVSDB protocol, it is not
frequently updated with support for recent OpenFlow protocol versions. Also it does
not contain separate module for QoS as in case of Ryu controller. Thus Ryu SDN
controller was chosen for implementation of our QoS framework. Ryu extensively
supports OVSDB protocol through a library using which REST applications could
be built to configure the database of OVS. Since it was implemented in Python
programming language, it facilitated quick prototyping to design our QoS frame-
work. Although OpenFlow 1.3 version was used for communication between Ryu
and OVS, which was sufficient for our use-cases, we intend to use OpenFlow 1.4 ver-
sion or greater for our future work which differs the way the controller communicates
with the networking devices.

2.3 Quality-of-Service (QoS)

QoS is the ability of a set of network technologies to assure the guarantee in ensur-
ing network services to the users. The vendors of the network devices, develop QoS
control mechanisms to manage these devices in a resource efficient way and provide
QoS to the traffic flows through them. In traditional computer networking protocols
such as IP and TCP/IP, the traffic is served on first-come-first-serve basis which is
termed as best-effort service. Network resources are equally shared among all the
traffic classes in this best-effort mechanism. As long as the availability of network
resources is unlimited, this kind of service works. But the network devices used in
Tactical Networks (TNs) are limited by capabilities in power usage, computing and
storage. Serving traffic flows through best-effort mechanism in TNs results in unsat-
isfactory experience for all the users in TNs, since different traffic flows have distinct
QoS requirements in terms of delay, jitter and packet loss. On one hand, critical
data such as sensor data and medical help request messages are sensitive to packet
delay, jitter and loss. Whereas on other hand, data from voice or video streaming
application are less sensitive to packet loss. Failure to meet these standards, result
in low Quality of Experience among the users.

In this regard, The Internet Engineering Task Force (IETF) defines two QoS control
architecture commonly presented as Integrated Service (IntServ) [5] and Differenti-
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ated Service (DiffServ) [1]. IntServ is based on resource allocation using Resource
ReSerVation Protocol (RSVP) [12]. Based on the QoS requirements of the applica-
tion, IntServ computes the required bandwidth between source and destination, and
allocates the network resources between them to serve the QoS on per-hop basis for
this application. IntServ requires each network device along the path from source to
destination, to maintain the state information for each traffic flows. Alternative to
this, DiffServ control architecture is based on traffic classification where QoS mech-
anisms differentiate traffic flows into different classes of traffic, and assign network
resources to certain class of traffic rather than allocating resources for traffic flows,
each time. Based on the QoS requirements for distinct traffic classes, network re-
sources are allocated. For example, traffic classes having low-latency requirements
are served on a priority basis by the resources. DiffServ is easier to implement and
network devices are not required to maintain a state of information on traffic flows.
Since the devices in Tactical Networks (TNs) are constrained by the battery and
memory, in IntServ model, the required memory to maintain the state information
grows along with the signalling messages when the number of traffic flow increases.
Also, since the links in TNs changes continuously, guaranteeing the bandwidth to
serve these traffic flows becomes difficult. Therefore, DiffServ QoS control architec-
ture is the most commonly used mechanism in addressing QoS requirements in TNs.
DiffServ uses Differentiated Services Code Point (DSCP) values in the header of an
IPV4 packet to distinguish packets coming from different traffic classes. In the next
section, we describe how QoS requirements can be specified for packets of certain
classes by encoding it’s DSCP values.

2.3.1 Differentiated Services Code Point (DSCP)

Packets can be classified based on the DSCP bits in their IP header to serve them
at different priority levels. DSCP is the most significant 6-bits in the 8-bit Type-
of-Service (ToS) field in the IPv4 packet header. Packets with the same DSCP bits
are treated equally irrespective of the traffic flow for which the packet belongs to.
The ToS byte in the packet header can further be categorized into three components
as shown in Table 2.5. The values in the ‘Precedence’ field is composed of 3-bits
through which the priority level for the packets can be specified. Total eight different
values (or priority levels) could be encoded using this ‘Precedence’ field as listed
in Table 2.6. Packets with binary value ‘000’ (Routine) have the lowest priority
while packets with binary value ‘111’ (Network) have the highest priority in DiffServ
mechanism.

Precedence Type-of-Service CU

0 1 2 3 4 5 6 7

Table 2.5 Composition of Type-of-Service (ToS) byte in the Internet Protocol version 4 (IPv4)
header [2]
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Binary value Description

000 Routine

001 Priority

010 Immediate

011 Flash

100 Flash Override

101 Critical

110 Internet

111 Network

Table 2.6 Definition for values in the Precedence field of ToS byte [2]

Binary value Description

1000 Minimize Delay

0100 Maximize Throughput

0010 Maximize Reliability

0001 Minimize Cost

0000 Normal Service

Table 2.7 Definition for values in the ToS field of ToS byte in IPv4 header [2]

2.4 Related Works

In the following sections, we discuss some of the related studies for provisioning QoS
in tactical networks. The literature review is further classified into investigations
for QoS management in tactical networks and investigations describing QoS man-
agement mechanisms available in SDN. Further we summarize the contributions of
these investigations in the form of a table while categorizing with respect to traffic
classification, adaptivity of QoS framework, and single-hop versus multi-hop sce-
nario.

2.4.1 QoS Management Mechanisms in SDN

The authors in [31] conducted a QoS-motivated literature review in OpenFlow en-
abled SDN networks characterized by network characteristics such as bandwidth,
delay, jitter and loss. The authors begin with the discussion of QoS capabilities of
OpenFlow protocol by looking at it’s different versions. They highlight QoS related
features and changes implemented from OpenFlow specification version 1.0 through
version 1.5. Summarizing QoS capabilities all through these versions; OpenFlow pro-
tocol provides: (i) ability to forward packet through a queue attached to the port;
(ii) ability to add, modify and remove VLAN tags along with support for multiple
levels of VLAN tagging; (iii) ability for a SDN controller to query all the queues
in the switch while collecting statistics about the network; (iv) rate monitoring and
limiting functionality by means of meter tables consisting of meter entries; (v) flow
monitoring framework that allows a controller to monitor the flow statistics in flow
tables in real-time.
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Furthermore, the authors elaborate relationship between SDN and QoS stressing
benefits of using SDN concept in ensuring QoS. As mentioned by the article’s au-
thors, decoupling of control plane and data plane in SDN brings in many opportuni-
ties to ensure QoS such as: (i) set of flow policies and classes are unrestricted while
it’s limited in conventional networks because of many vendor-specific firmwares at
use; (ii) through the use of SDN controller, network statistics can be monitored on
different levels with respect to per-flow, per-port, per-device while overcoming con-
ventional network’s limited global view and QoS possibilities, and per-hop decision
making. Due to above mentioned prominent and easier ways of ensuring QoS for
applications, SDN is a better candidate when compared to conventional networks
which lacks control over QoS.

SDN-capable switches, like Open vSwitch (OVS) [8], support QoS through Open-
Flow [41] and Open vSwitch Database (OVSDB) [44] protocols to control the flow
table, meter table and queues on the egress port. In [22], the authors proposed an al-
gorithm to actively monitor flow statistics and dynamically re-assign flow bandwidth
using meter table to achieve optimal throughput for all QoS flows. This dynamic
configuration of the meter table is achieved as an extension to the controller function-
alities rather than being an independent application using Representational State
Transfer (REST) northbound interface of the controller. As a result, it increases the
complexity of the controller and limits the enhancement of the QoS framework by
independent developers. Complementing this work, we developed an external REST
application to monitor traffic flows through flow table and meter table to adaptively
achieve QoS requirements.

The initial effort for providing RESTful interface to ease the process of queue creation
and deletion on switch ports was carried out by [43] with the support of OVSDB pro-
tocol. But the paper does not specify how to configure these queues upon creation.
Overcoming this limitation, [23] proposed an interface for flexible configuration of
these queues according to QoS policies. The proposed interface allowed external
applications to control the configuration of these priority queues. The configuration
included rate limiting and DiffServ capabilities on these queues. Our application
uses this interface to configure queues on switch port with respect to traffic classes
providing bandwidth guarantees.

In [26], the authors included an authentication scheme to control access for privileged
users to implement QoS functions. They chose to aggregate QoS behavior based on
VLAN-IDs instead of traffic types by installing flow rules to map one VPLS to a
prioritized queue on OVS. They developed a QoS module utilizing both, the queues
(on OVS via OVSDB) and the OpenFlow’s meter table features. Since meter entries
alone cannot suffice bandwidth sharing among different priority flows, the authors
combined the metering with queuing to provide bandwidth reservation for flows from
different VLAN-IDs. In our work, we employed similar combination of metering
with queuing to ensure bandwidth guarantee for different C2 services during low
data rates.
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2.4.2 QoS Management in Tactical Networks using traditional
networking

Prior to SDN, [32] introduced a tactical QoS framework based on Differentiated
Service (DiffServ) and Simple Network Management Protocol (SNMP). The frame-
work consists of tactical QoS information exchange, QoS module configuration and
Differentiated Service Code Point (DSCP) marking taking into account hierarchical
tactical network architecture. The hierarchical multi-layer architecture was designed
based on a tactical structure (platoon, company, battalion, and brigade) where the
leader controls and establishes QoS framework within the members of the same layer.
Within the layer, members exchange QoS information with the leaders through re-
quest/response method. Once the member node receives the QoS information, it
configures QoS module in it’s kernel through Linux Traffic Control (tc) commands.
The QoS module configuration consists of two phases i.e DSCP marking and hier-
archical scheduling. In DSCP marking phase, DiffServ field of the packet will be
marked to a specific DSCP value using DSCP Marking Information Base (DMB).
The DSCP values are mapped to a combination of traffic types and precedence. Traf-
fic precedence is distinguished into flash, immediate, priority and routine along with
real-time and non-real-time traffic types. The DSCP marking information consists
of destination IP/port, DSCP value, and egress interface. The marking takes place
at the traffic source (traffic generator) and cannot be changed by intermediate nodes
until the packet reaches the destination. Intermediate nodes only perform packet
forwarding according to the DSCP value of the packets. In hierarchical schedul-
ing phase, the packets will be filtered with respect to DSCP value mapping traffic
type and precedence. The authors showed that the packets with higher priority,
experience a shorter delay and lower jitter when compared to lower priority packets.
Similarly, in our work, we use some of these ideas together with SDN capabilities
to distinguish the traffic flows using DSCP values marked by a traffic generator
enforcing QoS.

In [49] the author examined the effect of employing two different priority queuing
disciplines, namely Fixed Priority Queue (FPQ) and Weighted Fair Queuing (WFQ)
in the MAC protocol. The performance of these two queuing disciplines were tested
on 40 nodes placed randomly within a quadratic area. The author concluded that
by employing FPQ, the higher-priority traffic class exceeding the network capacity
will dominate the links such that lower-priority traffic classes cannot pass through
the network. However, in military networks, this strict priority among traffic classes
makes sense because flash messages should always take precedence over other traffic
classes. On the other hand in WFQ, no traffic class could dominate the network.
Instead, the author suggests that a combination of both queues could be used by
employing WFQ under FPQ. But there is no quantitative evidence supporting such
suggestion in the paper. In this thesis, we introduce a hybrid priority scheduling
mechanism to enforce strict priority for high priority messages and fair scheduling
for low priority messages in order to address the limitation noticed in the literature
review.

The investigation in [29] describe the importance of providing End-to-End (E2E)
QoS over a combination of radio systems in an operation by an efficient and ro-
bust network. The authors describe QoS-aware mechanisms for inter-domain and
intra-domain heterogeneous networks, where mobility can lead to reduction and/or
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renegotiation of QoS parameters. They mention that the QoS architecture should
consist of admission control, resource monitoring and management, and the abil-
ity to preempt flows when the network is congested. While describing a possible
QoS architecture for providing connectivity and differentiated QoS support in het-
erogeneous mobile tactical networks, the authors present a multi-topology proactive
routing protocol which maintains multiple paths from source to destination to sup-
port the required QoS for a specific traffic class. The routing protocol maintains
three different QoS topologies: (i) Low data-rate (ii) High data-rate and (iii) Low
delay topologies depicting a group of radio transmission (VHF, UHF and SatCom)
technologies. The protocol finds a route by traversing the group of radio transmis-
sion technologies that best suits the required QoS for a specific traffic class. The
authors also showed that the traffic streams that cannot be supported by the path
can be preempted at the source of the traffic flow. In our work, we maintained a
similar multi-topology routing by using the SDN features with different flow tables
in OpenFlow switches for low and high data rate QoS topologies.

A queuing mechanism for delivering QoS-constrained user data flow in tactical net-
works given the network conditions was developed in Fraunhofer FKIE, and de-
scribed in [37, 38]. Here the authors assume that a set of QoS-constrained Com-
mand and Control (C2) services are available to the users in tactical networks where
each service comes with a predefined QoS-requirement. The authors proposed a
stochastic model to combine different types of messages in different ways to emulate
wide range of military operations. They were particularly interested in message’s
priority and time of expire to shape the user data flow for a given network con-
dition. Messages were sorted according to their priority in the queue of messages.
The queuing mechanism was designed for one-hop in a VHF network. If a message’s
period of stay in the queue is higher than it’s time of expire QoS-requirement, it is
dropped to ensure the QoS. The results of the queuing mechanism were discussed
at the receiver side showing that high priority messages had higher delivery rate
and lower delay when compared with the low priority messages. In our work, we
extended the shaping mechanism from one-hop to multi-hop radio networks, and
we used similar stochastic models to emulate randomness in network conditions and
message combinations.

2.4.3 QoS Management in Tactical Networks using SDN

Post SDN, the authors in [42] proposed the usage of SDN controller in provision-
ing E2E QoS in Tactical Edge Networks (TENs). They propose to categorize data
flows among the nodes forming TENs into interactive (eg. audio/video streaming)
and non-interactive (eg. file transfer) traffic. They suggest interactive traffic hav-
ing strict requirements in terms of delay could be prioritized over non-interactive
traffic using DSCP marking. And, a flow optimization application running in SDN
controller could be used to filter the pre-defined packet headers corresponding to
high priority traffic and select proper radio communication technology to dissemi-
nate these traffic with low delay. Despite the proposal, the article lacks practical
emulation/simulation of the described traffic classification and prioritization. On
the contrary, in this thesis, we demonstrate the quantitative results by emulated the
usage of SDN controller in monitoring the traffic flows while adaptively ensuring
QoS for these flows.
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Article Contribution
QoS

Hops
Adaptive Using

Classification QoS SDN

[32]
Introduction of a tactical QoS Using

multi-hop No No
framework based on DiffServ and SNMP DSCP marking

[49]
Priority scheduling of different Using

single-hop No No
traffic classes using FPQ and WFQ DSCP marking

[29]
Multi-topology proactive routing

No Traffic
multi-hop

Partially
Noprotocol for ensuring QoS in

classification adaptive
heterogeneous tactical networks

[37]
Emulation of randomness in network

By middleware single-hop Yes Noconditions and message generation
using stochastic processes

[42]
Proposal to use SDN controller to categorize

DSCP marking NA Yes Yestraffic flows and select proper radio
network to disseminate these flows

[34]
Provisioning of QoS for real-time data

No Traffic
multi-hop No YesNSS by computing optimal bandwidth

classification
between nodes in NSS

Table 2.8 QoS in tactical networks

In [34], authors proposed an algorithm called “Real-time Transmission via Flow-
rate-Control” by leveraging SDN to provision QoS for real-time data over a tactical
scenario in Naval Ship System (NSS). An optimization problem in terms of delay and
priority constraints were formulated; to improve network utilization by controlling
the bandwidth of the links between different nodes in NSS. Although the bandwidth
is controlled by the proposed algorithm, it can’t control the traffic rate generated
at the source. If the traffic rate generated at the source node is higher than the
allocated bandwidth by the algorithm for that flow, then the packets are dropped
at the source node. The performance of the proposed algorithm was verified using
mininet [33] with customized Floodlight SDN controller. Since the topology of nodes
in NSS is fixed, the work does not depict the dynamic and heterogeneous nature of
TENs. The authors does not elaborate on the types of traffic encountered in NSS.
Also, instead of shaping the traffic at source node when it exceeds the bandwidth
capacity, the packets are dropped. Our work does not focus on computing optimal
bandwidth between nodes but instead of dropping we queue the packets at source
node during traffic burst avoiding packet loss.

Table 2.8 summarizes the studies for provisioning QoS in tactical networks. The con-
tribution of each article is summarized along with the method used for classification
of traffic flows. Further, the contributions were categorized based on single-hop and
multi-hop implementations while provisioning QoS adaptively or not, and whether
using SDN paradigm or not.



3
Design and Implementation

In this chapter, we discuss the design of our SDN experimental framework using
which we emulated a mechanism to adaptively ensure Quality-of-Service (QoS) of
user data flow in Software Defined Heterogeneous Tactical Networks. Figure 3.1
depicts the topology of our experimental network setup within the Mininet [28]
emulating platform, used throughout our experiments, to evaluate our adaptive QoS
mechanism. Using Linux Network Namespaces [6], we deploy containers to emulate
heterogeneous nature in TNs.
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Figure 3.1 Experimental Network Setup

As shown in Figure 3.1, we deploy two containers i.e Source Host (h1) and Radio
Host (r1) with IP addresses 192.168.10.10 and 192.168.10.1 respectively, connected
by a Open vSwitch (OVS)-1 (OVS1) and a remote host with IP address 192.168.1.101
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to depict the software defined radio infrastructure at a message Sender radio. To
emulate the message sent by this Sender radio (r1) over a VHF, UHF and a SatCom
link, we deploy three OVS1,2,3 connected to three containers representing VHF, UHF
and SatCom destination radio hosts i.e h2, h3 and h4 with IP addresses 192.168.20.10,
192.168.30.10 and 192.168.40.10 respectively. The destination hosts are connected
to their respective OVS through virtual Ethernet (veth) link. The Sender radio r1,
has three veth interfaces: r1-eth1, r1-eth2 and r1-eth3 connected to OVS1, OVS2 and
OVS3 bridges. Using Linux Queuing Disciplines (Qdiscs) deployed on these three
virtual interfaces, we emulate VHF, UHF and SatCom radio link characteristics
between Sender radio (r1) and Receiver radios (h2, h3 and h4).

Ryu [14] SDN controller instance running on the remote host 192.168.1.101, connects
to OVS1 via south-bound interface using OpenFlow protocol [41] to install flow and
meter table entries to adaptively ensure QoS requirements of user data flow. We have
Representational State Transfer (REST) applications running on the north-bound
interface of the SDN controller to support adaptive installation of these entries.
Ryu was chosen as part of our network set up due to the reasons as described
in section 2.2.2. The Topology Discovery module running on the Ryu controller,
discovers the deployed topology in Mininet and inserts the MAC address table entries
in the corresponding flow tables of OVS1.

A Communication Scenario in TN can be described as a combination of user be-
haviour A and network conditions B (refer Figure 3.1), which are changing in-
dependently over time. To describe and emulate the challenges of addressing QoS
requirements of user data flow over ever-changing communication scenarios in het-
erogeneous tactical networks, we further divide this chapter into five sections as
follows. In Section 3.1, we begin with describing the importance of ensuring QoS
requirements of user data flow while listing different types of command and control
services available to users in TNs. We also describe a mechanism to emulate message
generation from these distinct services using a traffic generator. In Section 3.2, we
describe the heterogeneous nature of radio communication in TNs. We considered
to emulate data rates supported by three kinds of radio communication techniques
i.e VHF, UHF and SatCom in our emulation platform. In Section 3.3, we describe
some of the traffic shaping and scheduling mechanisms available within Linux envi-
ronment. We list some of the Queuing Disciplines (Qdiscs) available within Linux
kernel to implement traffic management capabilities. In Section 3.4, we describe
the features available within OVS to implement QoS requirements of user data flow.
We conclude this chapter by describing our adaptive QoS mechanism C (refer Fig-
ure 3.1) using REST applications running on Ryu controller together with OVS to
adaptively ensure QoS requirements of user data flow within our emulating platform.

3.1 QoS constrained user data flow

Ensuring Quality-of-Service (QoS) of data in heterogeneous TNs is important so that
the exchange of user generated data can be utilized to a maximum extent. Often,
users of TN generate more data than the network can handle resulting in network
congestion. So packets with higher priority should be served first than the lower
priority ones. This may result in bandwidth starvation for low priority traffic classes
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Type of Service Priority Reliability
Time-of-Expiry

ToE (sec)

m0 Medical evacuation (0x78) 0 Flash Yes 300
m1 Obstacle alert (0x50) 1 Immediate Yes 150
m2 Picture (0x28) 2 Priority Yes 3600
m3 Chat (0x04) 3 Routine No 120
m4 FFT (0x00) 3 Routine No 120

Table 3.1 Message priority and time of expiry [37]

1) Medical Evacuation: <start-time> ON <flowd-id> UDP <SRC-PORT> <DST-IP/PORT> <PATTERN> TOS 0x78
2) Obstacle Alert: <start-time> ON <flowd-id> UDP <SRC-PORT> <DST-IP/PORT> <PATTERN> TOS 0x50
3) Picture: <start-time> ON <flowd-id> UDP <SRC-PORT> <DST-IP/PORT> <PATTERN> TOS 0x28
4) Chat: <start-time> ON <flowd-id> UDP <SRC-PORT> <DST-IP/PORT> <PATTERN> TOS 0x04
5) FFT: <start-time> ON <flowd-id> UDP <SRC-PORT> <DST-IP/PORT> <PATTERN> TOS 0x00

Figure 3.2 MGEN script to generate messages listed in Table 3.1

or even they can be preempted. Due to the delay experienced by these low priority
traffic flows, they may not be relevant to the recipient by the time they were received.
In these cases, the expired data should be discarded or dropped. Different priorities
can be assigned to different traffic classes based on the type of military operation.
The network should be adaptable in supporting differential treatment to these traffic
classes. Table 3.1 lists five exemplary command and control services available to the
users in tactical networks. Each of these services has unique QoS-requirements in
terms of message priority, reliability and Time-of-Expiry (ToE).

To simulate message generation from these distinct services within Mininet, we use
Multi-Generator (MGEN) [7] traffic generator developed by US Naval Research Lab-
oratory since it is based on generating traffic patterns for a tactical scenario. The
MGEN tool provides the ability to generate messages with different priority in form
of Type-of-Service (ToS) bits set in the header of an IPv4 packet. MGEN is set to
use UDP as transport protocol using the commands as shown in Figure 3.2. Line1 in
Figure 3.2 represents the command to generate Message Evacuation message with
ToS bits set to ‘0x78’ in hexadecimal format. Similarly Line2 to Line5 represents
generation of Obstacle Alert (0x50), Picture (0x28), Chat (0x04) and FFT (0x00)
messages with respect to their ‘Priority’ QoS requirement (refer Table. 3.1). Each of
these messages can be generated at a specific time since the execution of the script
through distinct source port, to a destination IP address and port combination. The
“Pattern” of message generation can be specified in “ON” events by specifying the
message size and frequency of transmission.

In our experimental setup as shown in Figure 3.1, using an MGEN instance running
on source host h1, we generate a burst of these five messages with their corresponding
“Priority”. These messages were sent through VHF, UHF and SatCom link to their
corresponding destination hosts h2, h3 and h4, simultaneously. An MGEN instance
was running on these destination hosts to receive and log the messages in terms
of time-stamp (sent and received), packet sequence number and it’s size. Using
these features we computed packet loss and delay to quantify the system’s ability to
differentiate messages with distinct QoS requirements.
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3.2 Ever-changing link data rates

It is a challenging task to meet all the requirements of a radio communication among
the nodes in a Tactical Network (TN) considering the node mobility, constrained
resources and unreliable communication links between them. The movement of
these nodes in the battlefield scenarios or disaster relief is extremely dynamic. The
communication environment in these scenarios is usually infrastructure-less and thus
these nodes have to be connected through wireless communication network. Further,
based on the degree of mobility, these nodes can be categorized into static (like
sensors), dynamic (like convoys, platoons etc.,) and into extremely dynamic (like
UAVs). Different radio communication systems are used such as HF, VHF, UHF
and SatCom to connect mobile units and command posts together to meet all the
requirements of a tactical radio communication. These radio communication systems
have different characteristics in terms capacity, range, anti-jamming capabilities and
robustness [21]. Figure 3.3 illustrates three types of radio communication techniques
emulated in our experimental setup using Queuing Disciplines (Qdiscs). Very High
Frequency (VHF) radios such as PR4G by Thales supports a maximum data rate
of 9.6 kilobits per second (kbps) over a range of 20 kilometers (kms). Depending on
the distance between these radios, they support a data rate of (0.6, 1.2, 2.4, 4.8 and
9.6) kbps. Similarly depending on the vendor of the radio, Ultra High Frequency
(UHF) radios support a maximum data rate of 240 kbps over a range of 2 kms. And
we assume data rates supported by these UHF radios to be (15, 30, 60, 120 and 240)
kbps. Also we assume Satellite Communications (SatCom) to support a data rate
of (32, 64, 128, 256 and 512) kbps in our experiments in the emulating platform.
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32 64 128 256 512
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VHF
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Sender
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Figure 3.3 Exemplary data rates supported by VHF, UHF and SatCom waveforms

We considered to simulate these different data rates of different radio communication
systems in a heterogeneous node to emulate dynamic network conditions experienced
by nodes in a tactical scenario. The sources of varying network conditions could be
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due to (i) frequent topology changes because of node mobility. (ii) intermittent com-
munication links due to terrain masking and (iii) due to unpredictable operational
conditions. In our experimental network setup as shown in Figure 3.1, we attach
Qdiscs on interfaces: r1-eth1, r1-eth2 and r1-eth3, representing a radio with hetero-
geneous communication setup to shape the data rate with respect to the data rates
supported by VHF, UHF and SatCom, as mentioned before.

3.3 The QoS Mechanisms in Linux Kernel

This Section describes a range of Quality-of-Service (QoS) mechanisms available
within Linux environment. Queuing Disciplines (Qdiscs) implement the traffic man-
agement capabilities within Linux Kernel. The Qdisc is located between the IP Stack
and the network interface, which can be configured using user space utility program
called Traffic Control (TC). Based on the Qdisc being used, TC lets us configure
the rate at which packets are to be transmitted through the network interface along
with preferential treatment to certain packets to move ahead than the rest, while
being transmitted. Preferential treatment is achieved by classifying packets coming
from different traffic classes and scheduling them based on their priorities assuming
that the packets have already been marked with their respective ToS bits in the
packet header. Rate limiting and scheduling of packets are always carried out at the
outbound interface while having no control over how packets can be treated at the
inbound interface, except policing them. In the following sub-sections, we describe
various Qdiscs supported by the Linux Kernel to shape the traffic with respect to
the data rates supported by different radio communication systems as described be-
fore and to schedule the traffic from distinct command and control services (refer
Table 3.1) according to their “Priority” QoS requirement.

3.3.1 Traffic shaping

Traffic shaping is a mechanism in which the amount of data sent over a network
could be controlled, typically implemented as an algorithm in the kernel networking
stack. In our experimental network setup, we refer traffic shaping as a combination
of pacing and rate limiting. Pacing refers to injection of inter-packet gaps to smooth
the traffic considering the network bandwidth, to avoid packet loss when the amount
of data generated exceeds the network capacity. Rate limiting refers to enforcement
of data rate on flow-aggregate basis. In our experiments, we perform pacing and
rate limiting on the source host h1 and Radio Host r1 (refer Figure 3.1), considering
the individual and aggregate of bandwidth available over VHF, UHF and SatCom
links. In the following sub-sections we discuss the two most widely used algorithms
for traffic shaping and their implementation within our network setup.

3.3.1.1 Token Bucket Filter (TBF)

Traffic shaping algorithm such as Token Bucket Filter (TBF) Qdisc [4], buffers the
packets in a queue while waiting for tokens to pass through the queue of the network
interface. These tokens can be generated at a specific rate, defining the rate at which
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packets have to be transmitted. Figure 3.4 describes the structure of a TBF Qdisc.
As the name suggest, the Qdisc consist of a bucket, constantly filled with some
virtual pieces of information called ‘tokens’ at a specific rate called token rate.

The messages generated by MGEN in the user space are broken down into packets
in the kernel space within the Linux environment. The incoming packets will be
enqueued to the packet queue if it has sufficient space to admit the packet else the
packet will be dropped. While dequeuing the packets from packet queue, the token
bucket is inspected to check if it contains sufficient tokens with respect to the size of
the packet in byte, where 1 token equals to 1 byte. If sufficient tokens are available,
the packet is allowed to pass through, to driver queue at the outbound interface, else
the packet has to wait until appropriate amount of tokens are available. Here we
can specify the token rate to match the data rate at which traffic has to be shaped
corresponding to the radio modulation in use.

3.3.1.2 Hierarchy Token Bucket (HTB)

HTB Qdisc uses a tree organization (refer Figure 3.5) of class-based hierarchical
system and filters to shape the data flow. HTB uses filters based on packet header
attributes to classify incoming packets into several classes, each associated with a
TBF Qdisc at leaf level in the tree. These filters can be assigned to a class or a
Qdisc or both based on the design of the tree. Figure 3.5 describe the structure of
HTB Qdisc, used throughout our experiments which was attached to the outbound
interface h1-eth0 of source host h1 (refer Figure 3.1) and was used to shape the data
flow destined towards a VHF (h2), UHF (h3) and a SatCom (h4) node. Figure 3.6
lists a set of commands to setup this HTB Qdisc structure at the egress interface of
host, h1.

The IP packets coming from the user space MGEN traffic generator with appropriate
ToS byte as listed in Figure 3.2 are enqueued to the root HTB Qdisc (1:) deployed
in the kernel space of a Linux environment running on host, h1. Line1 in Figure 3.6
describe the command to setup this root Qdisc on egress interface h1-eth0. Under
this root, lies another HTB Qdisc (1:1) which classifies the packets based on the
destination IP address. Line2 describe the command to setup this inner Qdisc under
the root. All the packets passing through this root Qdisc are enqueued to the
inner Qdisc with the help of a filter (refer Line6 in Figure 3.6). The rate at which
packets have to be dequeued from this inner Qdisc is configured according to the
traffic aggregation of leaf Qdiscs. Under this inner Qdisc, three leaf HTB Qdiscs i.e
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1) tc qdisc add dev <interface> root handle 1: htb
2) tc class add dev <interface> parent 1: classid 1:1 htb rate 762kbit ceil 762kbit burst 762kb
3) tc class add dev <interface> parent 1:1 classid 1:11 htb rate 9.6kbit ceil 9.6kbit burst 10kb
4) tc class add dev <interface> parent 1:1 classid 1:12 htb rate 240kbit ceil 240kbit burst 240kb
5) tc class add dev <interface> parent 1:1 classid 1:13 htb rate 512kbit ceil 512kbit burst 512kb
6) tc filter add dev <interface> parent 1:0 protocol ip prio 1 u32 match ip src <address>
6) match ip protocol 17 0xff flowid 1:1
7) tc filter add dev <interface> parent 1:1 protocol ip prio 1 u32 match ip dst <VHF-DST-address>
7) match ip protocol 17 0xff flowid 1:11
8) tc filter add dev <interface> parent 1:1 protocol ip prio 1 u32 match ip dst <UHF-DST-address>
8) match ip protocol 17 0xff flowid 1:12
9) tc filter add dev <interface> parent 1:1 protocol ip prio 1 u32 match ip dst <SatCom-DST-address>
9) match ip protocol 17 0xff flowid 1:13

Figure 3.6 Linux Traffic Control (TC) commands to add HTB Qdisc on the egress interface
of Source Host (192.168.10.10)

(1:11), (1:12) and (1:13) are attached to shape the data rate according to the data
rates (refer Figure 3.3) supported by a VHF, UHF and SatCom link respectively.
Inner Qdisc (1:1) uses a filter to classify the packets destined towards a VHF (h2),
UHF (h3) and SatCom (h4) host and enqueues corresponding packets to leaf Qdiscs
(1:11), (1:12) and (1:13) respectively. In Line3,4,5 we specify ceil rate and burst
size to define the maximum data rate supported by a VHF, UHF and SatCom radio
links respectively.

To emulate ever-changing link data rates at a heterogeneous node, we attached
HTB Qdiscs on r1-eth1, r1-eth2 and r1-eth3 interfaces of Radio Host (192.168.10.1)
connected to VHF, UHF and SatCom destination hosts, respectively. Line1,2,3 of
Figure 3.7 lists the Linux TC commands to setup a HTB Qdisc on r1-eth1 interface
to emulate the data rates supported by a VHF radio as described in Section 3.2.
Similarly, Line4,5,6 and Line7,8,9 describe the commands to setup HTB Qdiscs on
r1-eth2 and r1-eth3 interfaces to emulate data rates supported by UHF radio and
SatCom respectively. During initial deployment of our network setup within Mininet,
all these three interfaces were configured to shape the data rate with respect to the
maximum rate supported by the corresponding radio link to the destination host.

Line1,2,3 of Figure 3.8 describe the commands to change the link data rate on inter-
faces r1-eth1, r1-eth2 and r1-eth3 respectively. Using these commands, we emulate
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1) tc qdisc add dev r1-eth1 root handle 1: htb default 1
2) tc class add dev r1-eth1 parent 1: classid 1:1 htb rate 9.6kbit ceil 9.6kbit burst 10kb
3) tc filter add dev r1-eth1 parent 1: protocol ip prio 1 u32 match ip dst 192.168.20.10

match ip protocol 17 0xff flowid 1:1

4) tc qdisc add dev r1-eth2 root handle 1: htb default 1
5) tc class add dev r1-eth2 parent 1: classid 1:1 htb rate 240kbit ceil 240kbit burst 240kb
6) tc filter add dev r1-eth2 parent 1: protocol ip prio 1 u32 match ip dst 192.168.30.10

match ip protocol 17 0xff flowid 1:1

7) tc qdisc add dev r1-eth3 root handle 1: htb default 1
8) tc class add dev r1-eth3 parent 1: classid 1:1 htb rate 512kbit ceil 512kbit burst 512kb
9) tc filter add dev r1-eth3 parent 1: protocol ip prio 1 u32 match ip dst 192.168.40.10

match ip protocol 17 0xff flowid 1:1

Figure 3.7 Linux TC commands to add HTB Qdiscs on the interfaces of Radio Host
(192.168.10.1)

1) tc class change dev r1-eth1 parent 1: classid 1:1 htb rate <VHF-data-rate>kbit
2) tc class change dev r1-eth2 parent 1: classid 1:1 htb rate <UHF-data-rate>kbit
3) tc class change dev r1-eth3 parent 1: classid 1:1 htb rate <SatCom-data-rate>kbit

Figure 3.8 Linux TC commands to change the link data rates on the interfaces of Radio Host
(192.168.10.1)

dynamic network conditions experienced by a heterogeneous node in a tactical sce-
nario as described in Section 3.2 and test our adaptive QoS mechanism to ensure
QoS requirements of user data flow, depending on the network condition.

3.3.2 Traffic scheduling

Traffic scheduling refers to the preferential treatment of certain packets to move
ahead than the rest while being transmitted though the egress interface of the host.
The Linux Kernel supports various Qdiscs implementing Differentiated Service (Diff-
Serv) for traffic classes. These Qdiscs prioritize certain packets by decreasing the
time that these packets have to wait in the queue during transmission. Qdisc im-
plementations for scheduling the traffic can further be classified into priority and
fairness based scheduling mechanisms for traffic classes. A recent Qdisc implemen-
tation, merges the strict priority and fairness based scheduling mechanism into a
hybrid scheduling mechanism. In the following sub-sections, we describe a Qdisc
implementation available for all these three scheduling mechanisms. In our experi-
mental network setup (refer Figure 3.1), we deploy these Qdiscs at the egress inter-
face: h1-eth0 of host, h1 to schedule the packets once it is shaped with respect to the
available network bandwidth, thereby ensuring “Priority” QoS requirements of the
user data flow.

3.3.2.1 Priority First-In-First-Out (PFIFO)

The PFIFO Qdisc is a class of priority based scheduling mechanism. This Qdisc is
the basis for providing a relatively simple method of supporting DiffServ for traffic
classes. Figure 3.9 describes the structure of PFIFO Qdisc, where a band (or queue)



3.3. The QoS Mechanisms in Linux Kernel 27

1:

PFIFO

enqueue

enqueue

dequeue

Lowest Priority

Highest Priority

C
la

ss
ifi

er

S
cheduler

band 0

band 1

band 2

band 3

MGEN

Medical Evacuation
Obstacle Alert

Picture
Chat
FFT

Driver Queue

dequeue

Figure 3.9 Structure of Priority First-In-First-Out (PFIFO) Qdisc

is created for each priority based traffic classes. It consists of a classifier which
classifies the incoming packets based on the ToS bits set in the packet header and
places them onto corresponding priority bands. It also consists of a scheduler which
dequeues the packets from these priority bands in FIFO order. As described in the
Figure 3.9, the PFIFO Qdisc structure in our experimental setup, consists of four
bands0,1,2,3 inorder to enforce “Priority” QoS requirements listed in Table 3.1 for the
distinct command and control services. The packets generated from these services
were classified and enqueued to corresponding bands using classifier. Packets from
Medical Evacuation message with ToS bit ‘0x78’ were enqueued to band0. Similarly,
packets from Obstacle Alert (0x50) were enqueued to band1, packets from Picture
(0x28) to band2 and packets from Chat (0x04) and FFT (0x00) to band3. Within
these strict priority bands, packets in band0 has the highest priority and packets in
band3 has the lowest priority while scheduling the traffic. Packets from lower priority
bands will only be dequeued once the higher priority bands become empty.

In our network setup, we attached three PFIFO Qdiscs referred by handles (11:),
(12:) and (13:) under three Qdiscs (1:11), (1:12) and (1:13) respectively to
schedule the traffic, once it is shaped with respect to VHF, UHF and SatCom link
capacity. Line6 to Line20 in Figure 3.10 describe the commands to setup these three
PFIFO Qdiscs. Line6 describe the command to setup a PFIFO Qdisc by handle
(11:) under HTB Qdisc (1:11) with four bands0,1,2,3 while mapping the packets to
the corresponding bands. Mapping occurs based on the ToS octet of the packet with
16 different possible octet values. By defining the mapping sequence to ‘3 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0’, we specify the classifier to map lowest priority packets from
Chat and FFT message to band3, packets from Picture to band2, Obstacle Alert to
band1, and packets from Medical Evacuation message including packets from other
higher priority messages to band0. In each of these four bands, a netem Qdisc was
added to include 5 milliseconds (ms) delay to accommodate the classification and
scheduling phases. Without this injection of minimum delay, we experienced packet
loss in either of the two phases. Line9 to Line12 describe the command to setup
four netem Qdiscs (111:), (112:), (113:) and (114:) with bands0,1,2,3 respectively.
Similarly, Line7 and Line8 describe the commands to include PFIFO Qdiscs (12:)
and (13:) under HTB Qdiscs (1:12) and (1:13) respectively, along with four netem
Qdiscs (Line13 to Line20) for each of these PFIFO Qdiscs.
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1) tc qdisc add dev <interface> root handle 1: htb
2) tc class add dev <interface> parent 1: classid 1:1 htb rate 762kbit ceil 762kbit burst 762kb
3) tc class add dev <interface> parent 1:1 classid 1:11 htb rate 9.6kbit ceil 9.6kbit burst 10kb
4) tc class add dev <interface> parent 1:1 classid 1:12 htb rate 240kbit ceil 240kbit burst 240kb
5) tc class add dev <interface> parent 1:1 classid 1:13 htb rate 512kbit ceil 512kbit burst 512kb
6) tc qdisc add dev <interface> parent 1:11 handle 11: prio bands 4 priomap 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0
7) tc qdisc add dev <interface> parent 1:12 handle 12: prio bands 4 priomap 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0
8) tc qdisc add dev <interface> parent 1:13 handle 13: prio bands 4 priomap 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0
9) tc qdisc add dev <interface> parent 11:1 handle 111: netem limit 1000 delay 5ms
10) tc qdisc add dev <interface> parent 11:2 handle 112: netem limit 1000 delay 5ms
11) tc qdisc add dev <interface> parent 11:3 handle 113: netem limit 1000 delay 5ms
12) tc qdisc add dev <interface> parent 11:4 handle 114: netem limit 1000 delay 5ms
13) tc qdisc add dev <interface> parent 12:1 handle 121: netem limit 1000 delay 5ms
14) tc qdisc add dev <interface> parent 12:2 handle 122: netem limit 1000 delay 5ms
15) tc qdisc add dev <interface> parent 12:3 handle 123: netem limit 1000 delay 5ms
16) tc qdisc add dev <interface> parent 12:4 handle 124: netem limit 1000 delay 5ms
17) tc qdisc add dev <interface> parent 13:1 handle 131: netem limit 1000 delay 5ms
18) tc qdisc add dev <interface> parent 13:2 handle 132: netem limit 1000 delay 5ms
19) tc qdisc add dev <interface> parent 13:3 handle 133: netem limit 1000 delay 5ms
20) tc qdisc add dev <interface> parent 13:4 handle 134: netem limit 1000 delay 5ms
21) tc filter add dev <interface> parent 1:0 protocol ip prio 1 u32 match ip src <address>
22) match ip protocol 17 0xff flowid 1:1
23) tc filter add dev <interface> parent 1:1 protocol ip prio 1 u32 match ip dst <VHF-DST-address>
24) match ip protocol 17 0xff flowid 1:11
25) tc filter add dev <interface> parent 1:1 protocol ip prio 1 u32 match ip dst <UHF-DST-address>
26) match ip protocol 17 0xff flowid 1:12
27) tc filter add dev <interface> parent 1:1 protocol ip prio 1 u32 match ip dst <SatCom-DST-address>
28) match ip protocol 17 0xff flowid 1:13

Figure 3.10 Linux Traffic Control (TC) PFIFO Qdisc configuration commands

3.3.2.2 Enhanced Transmission Selection (ETS)

To ensure each traffic class has fair access to the network resources, fairness based
Qdiscs such as Stochastic Fair Queuing, Weighted Fair Queuing and Deficit Round
Robin (DRR) exist. These Qdiscs serve flows from traffic classes by assigning certain
percentage of bandwidth in round-robin order. The primary benefit of employing
these fairness based Qdiscs is that the bursty higher-priority traffic flows do not
degrade the QoS of lower-priority traffic flows. However, employing these fairness
based Qdiscs makes sense when none of the traffic classes should be allowed to dom-
inate the low-bandwidth network link. But in tactical networks, high-priority traffic
flows such as Medical Evacuation and Obstacle Alert should always take precedence
over other traffic flows. So in our quest to find the right balance between priority and
fair scheduling of traffic classes, we found Enhanced Transmission Selection Sched-
uler (ETS) Qdisc that merges the functionality of PFIFO and DRR Qdiscs in one
Qdisc. ETS is a new Qdisc added to the recent Linux kernel 5.8 version [3]. ETS
allows us to create bands (or queues) for strict priority as well as fairness based
scheduling. The number of bands for both the category of scheduling can be con-
figured. Packets from fair-sharing bands are only dequeued if all the bands reserved
for strict priority is empty. Further, among fair-sharing bands the amount of bytes
a band is allowed to dequeue in one round-robin can be configured.

We conducted experiments by replacing PFIFO Qdiscs under the leaf HTB Qdiscs
by three ETS Qdiscs (11:), (12:) and (13:) to schedule Medical Evacuation and
Obstacle Alert messages in strict priority order. Remaining messages were scheduled
through fairness based mechanism. In our work, we term this mixture of scheduling
mechanisms as a hybrid scheduling mechanism. Figure 3.11 describes the structure
of ETS Qdisc placed under three HTB Qdiscs (1:11), (1:12) and (1:13) to schedule
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Figure 3.11 Structure of Enhanced Transmission Selection (ETS) Qdisc

1) tc qdisc add dev <interface> root handle 1: htb
2) tc class add dev <interface> parent 1: classid 1:1 htb rate 762kbit ceil 762kbit burst 762kb
3) tc class add dev <interface> parent 1:1 classid 1:11 htb rate 9.6kbit ceil 9.6kbit burst 10kb
4) tc class add dev <interface> parent 1:1 classid 1:12 htb rate 240kbit ceil 240kbit burst 240kb
5) tc class add dev <interface> parent 1:1 classid 1:13 htb rate 512kbit ceil 512kbit burst 512kb
6) tc qdisc add dev <interface> parent 1:11 handle 11: ets strict 2 quanta 900 600 priomap 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0
7) tc qdisc add dev <interface> parent 1:12 handle 12: ets strict 2 quanta 900 600 priomap 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0
8) tc qdisc add dev <interface> parent 1:13 handle 13: ets strict 2 quanta 900 600 priomap 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0
9) tc qdisc add dev <interface> parent 11:1 handle 111: netem limit 1000 delay 5ms
10) tc qdisc add dev <interface> parent 11:2 handle 112: netem limit 1000 delay 5ms
11) tc qdisc add dev <interface> parent 11:3 handle 113: netem limit 1000 delay 5ms
12) tc qdisc add dev <interface> parent 11:4 handle 114: netem limit 1000 delay 5ms
13) tc qdisc add dev <interface> parent 12:1 handle 121: netem limit 1000 delay 5ms
14) tc qdisc add dev <interface> parent 12:2 handle 122: netem limit 1000 delay 5ms
15) tc qdisc add dev <interface> parent 12:3 handle 123: netem limit 1000 delay 5ms
16) tc qdisc add dev <interface> parent 12:4 handle 124: netem limit 1000 delay 5ms
17) tc qdisc add dev <interface> parent 13:1 handle 131: netem limit 1000 delay 5ms
18) tc qdisc add dev <interface> parent 13:2 handle 132: netem limit 1000 delay 5ms
19) tc qdisc add dev <interface> parent 13:3 handle 133: netem limit 1000 delay 5ms
20) tc qdisc add dev <interface> parent 13:4 handle 134: netem limit 1000 delay 5ms
21) tc filter add dev <interface> parent 1:0 protocol ip prio 1 u32 match ip src <address>
22) match ip protocol 17 0xff flowid 1:1
23) tc filter add dev <interface> parent 1:1 protocol ip prio 1 u32 match ip dst <VHF-DST-address>
24) match ip protocol 17 0xff flowid 1:11
25) tc filter add dev <interface> parent 1:1 protocol ip prio 1 u32 match ip dst <UHF-DST-address>
26) match ip protocol 17 0xff flowid 1:12
27) tc filter add dev <interface> parent 1:1 protocol ip prio 1 u32 match ip dst <SatCom-DST-address>
28) match ip protocol 17 0xff flowid 1:13

Figure 3.12 Linux Traffic Control (TC) PFIFO Qdisc configuration commands

the traffic flow, once it is shaped according to the radio communication technology
(refer Figure 3.5). Line6 to Line20 in Figure 3.12 describe the commands to setup
three ETS Qdiscs under these three HTB Qdiscs. Two bands (band0 and band1)
were configured for strict priority scheduling while band2 and band3 were configured
for fairness based scheduling. 900 bytes were dequeued from band2 in one-round
robin while 600 bytes were dequeued from band3. Configuration commands ‘ets
strict 2 quanta 900 600’ in Line6,7,8 in Figure 3.12 describe this hybrid scheduling
setup. Similar to the mapping sequence in case of PFIFO Qdisc, in ETS Qdisc we
map packets coming from Medical Evacuation and Obstacle Alert to strict priority
bands band0 and band1 respectively. Packets from Picture to fairness based band2

and packets from Chat and FFT to band3. Command ‘priomap 3 3 2 1 0 0 0 0
0 0 0 0 0 0 0 0’ in Line6,7,8 describes this mapping setup. In each of these four
bands, a netem Qdisc was added to include 5 milliseconds (ms) inter-packet delay
to avoid packet loss during classification and scheduling phases, similar to the setup
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in PFIFO Qdisc. Line9 to Line20 in Figure 3.12 describe commands to inject this
delay.

3.4 QoS Implementation using Open vSwitch (OVS)

Considering the architecture of OVS, as described in the Section 2.2.1 of chapter 2,
we make use of flow table and meter table features for our adaptive QoS mechanism.
Using north-bound REST interface of Ryu SDN controller, flow and meter entries
can be inserted into flow and meter table respectively using OpenFlow protocol.
Table 3.2 lists the flow entries inserted into flow tables of OVS1 in our network
setup (refer Figure 3.1). In the flow table0 of OVS1 in our network setup as listed
in Table 3.2, we have defined two kinds of flow rules: one with the highest priority
(65535) to match Link Layer Discovery Protocol (LLDP) packets and the other with
Priority ‘1’ to match IP packets. The matched LLDP packets were sent to the Ryu
controller running on the remote host ‘192.168.1.101’ (refer Figure 3.1). A Topology
Discovery module running on the Ryu controller, on receiving these LLDP packets
from OVS1, discovers the network topology and inserts MAC address table entries
in flow table1. We defined 15 flow entries with Priority ‘1’ in flow table0 of OVS1

to match IP packets coming from the source host ‘192.168.10.10’ destined towards
VHF (192.168.20.10), UHF (192.168.30.10) and SatCom (192.168.40.10) destination
hosts as shown in Figure 3.1. Within these 15 flow rules, 3 sets consisting of 5 rules
each were used to match IP packets with distinct DSCP values for a combination
of source and destination IP addresses. Packets coming from Medical Evacuation
message were matched using DSCP value 30. Similarly, packets from Obstacle Alert,
Picture, Chat and FFT were matched using DSCP values 20, 10, 1 and 0 respec-
tively. DSCP values were used in the Match Fields to ensure Time-of-Expiry (ToE)
QoS requirement of these messages using REST applications running on the Ryu
controller. Packets that were matched with respect to source and destination ad-
dresses, were assigned a meter id from the meter table of OVS1 to shape the data
flow corresponding to VHF, UHF and SatCom link bandwidth. All the packets that
were matched with flow rule Priority ‘1’ was forwarded to flow table1 on OVS1,
having further instructions in the form of MAC address table entries to send it to
the destination host.

Flow
Priority Match Fields Instructions Timeouts

table

0

65535 <eth type: LLDP> <OUTPUT: CONTROLLER> 0

1
<eth type: IP> <GOTO TABLE: 1>

0<ip src>, <ip dst> <METER: id>
<ip dscp> <SET QUEUE: id>

1 1
<in port>

<OUTPUT: port> 0
<eth dst: MAC addr>

Table 3.2 Flow entries in Flow tables

In Table 3.3, we list a set of rate limiting entries inserted into the meter table of
OVS1 corresponding to the data rates supported by a SatCom link (512, 256, 128,
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64 and 32 kbps), a UHF radio (240, 120, 60, 30 and 15 kbps) and a VHF radio (9.6,
4.8, 2.4, 1.2 and 0.6 kbps) as described in the Section 3.2. Entries for the latter were
rounded off due to meter table not supporting neither decimal nor bits per second
entries. In our adaptive QoS mechanism we use these entries in the meter table to
adaptively attach these entries with unique meter IDs to the flow entries of flow
table0 as defined in Table 3.2. We specified the action for each of these meter bands
to ‘DROP’, since OVS do not support ‘DSCP REMARK’ action for meter bands
as mentioned in the Section 2.2.1 of chapter 2 while describing the components of a
meter table.

Meter ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rate in kbps 512 256 128 64 32 240 120 60 30 15 10 5 3 2 1

Table 3.3 Meter entries in Meter table

3.5 The Adaptive QoS Mechanism

In this Section, we describe the mechanism to adaptively ensure QoS requirements of
the user data flow through REST applications running on the north-bound interface
of the remote Ryu controller C as described in Figure 3.1. First, we describe the
commands to setup meter table and flow table of OVS1 with initial configurations.
Later, we describe the algorithms to manipulate these configurations of meter table
and flow table, thus ensuring QoS requirements of user data flow, adaptively.

Ryu SDN controller supports retrieving and updating configurations of OpenFlow
switches through the use of applications by exposing REST APIs. ‘ryu.app.ofctl rest’
is one such application providing REST APIs to configure OpenFlow switches such as
Open vSwitch (OVS). Once Ryu controller connects to the OVS through OpenFlow
channel, we can run custom REST applications using APIs provided by ‘ofctl rest’
application. Similarly, Ryu provides ‘rest qos’ application specifically designed to
provide APIs to install and manipulate meter entries in the meter table. Figure 3.13
describe the REST python script to insert entries into the meter table of an OVS.
In Line1, we import the python ‘requests’ library to send HTTP requests to the
OVS. Hypertext Transfer Protocol (HTTP) defines the underlying format to how
client formulates a request and how server responds to it with a response message.
In our network setup, the remote host with IP address 192.168.1.101 on which the
Ryu controller instance is running acts as a HTTP client and the OVS1 of which
the meter table has to be configured, acts as a server responding with insertion of
entries into it’s meter table. Line2 specifies the IP address and the port number on
Open vSwitch Database (OVSDB) of OVS1 is listening to get connected to the Ryu
controller through OpenFlow channel. Line3 specifies the URL of the OVS1 with
distinct ‘datapath-id’. Once the connection to OVS1 is established within this REST
application, using Line4 and Line5 we insert meter entries as listed in Table 3.3 into
the meter table. 15 meter entries with distinct ‘meter id’ and ‘rate’ were added
using the datapath identifier (dpid) of OVS1 listing the data rates supported by
VHF, UHF and SatCom radios.

Similarly, flow table0 of OVS1 is configured using REST application script as de-
scribed in the Figure 3.14. Using Line1,2,3 we establish HTTP connection to the
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1) import requests

2) ovsdb address = “tcp:127.0.0.1:6632”
3) requests.put(‘http://192.168.1.101:8080/v1.0/conf/switches/<datapath-id>/ovsdb addr’,

data = ovsdb address)

4) meter entry = {”dpid”: <id>, ”flags”: ”KBPS”, ”meter id”: <id>,
”bands”: [{”type”: ”DROP”, ”rate”: <rate>, ”burst size”: <burst rate>}]}

5) requests.post(‘http://192.168.1.101:8080/qos/meter/<datapath-id>’,
data = meter entry)

Figure 3.13 REST application to configure meter table on OVS1

Open vSwitch Database (OVSDB) on OVS1. Line4 describes the format of flow rule
to be inserted into flow table0 as a key-value pair. The key-value pair ‘table id: 0’
specifies the flow table id, to which the flow rule has to be inserted along with dpid
of the switch (i.e dpid of OVS1). We specify the ‘idle’ and ‘hard’ timeout of this
flow rule to ‘0’ defining the existence of this rule inside flow table0 to an infinite
amount of time. As part of the Match Fields, we insert IP source and destination
addresses along with DSCP values of IP packets (eth type: 2048) through UDP pro-
tocol (ip proto: 17). A total of 15 flow rules were added to flow table0 to uniquely
distinguish packets coming from 5 distinct command and control services (refer Ta-
ble 3.1) destined towards VHF (192.168.20.10), UHF (192.168.30.10) and SatCom
(192.168.40.10) destination hosts.

1) import requests

2) ovsdb address = “tcp:127.0.0.1:6632”
3) requests.put(‘http://192.168.1.101:8080/v1.0/conf/switches/<datapath-id>/ovsdb addr’,

data = ovsdb address)

4) flow entry = {”dpid”: <id>, ”table id”: 0, ”idle timeout”: 0, ”hard timeout”: 0, ”priority”: 1,
”match”:{”ipv4 src”: ”192.168.10.10”, ”ipv4 dst”: <dst addr>,
”ip dscp”: <dscp value>, ”ip proto”: 17, ”eth type”: 2048},
”actions”:[{”type”:”GOTO TABLE”, ”table id”: 1},

{”type”:”METER”, ”meter id”: <id>}]}
5) requests.post(‘http://192.168.1.101:8080/stats/flowentry/add’, data = flow entry)

Figure 3.14 REST application for initial configuration of flow table0 on OVS1

3.5.0.1 Adaptive Shaping Mechanism using meter table of Open vSwitch

We assume that in Software Defined Radios, an application running on SDN con-
troller should have access to the information about the current radio modulation (or
waveform) being used. Depending on the data rate supported by the current radio
modulation, the application can modify flow entries in the flow table of OpenFlow
switch to adaptively serve QoS requirements of the user data flow. Considering this
assumption, we developed a REST application running on the Ryu controller in our
network setup, to gain access to the current data rate on r1-eth1, r1-eth2 and r1-eth3

interfaces of the Radio Host (192.168.10.1) emulating ever-changing link data rates
at a heterogeneous node as described in Section 3.3.1.2.

To serve the information about the data rates on these egress interfaces, we made
use of tinyrpc framework [16] written in python for making and handling Remote
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1) from tinyrpc.dispatch import RPCDispatcher
2) from tinyrpc.transports.wsgi import WsgiServerTransport
3) from tinyrpc.server.gevent import RPCServerGreenlets
4) from tinyrpc.dispatch import RPCDispatcher
5) import subprocess

6) dispatcher = RPCDispatcher()
7) transport = WsgiServerTransport(queue class=gevent.queue.Queue)
8) rpc server = RPCServerGreenlets(transport, JSONRPCProtocol(), dispatcher)

9) @dispatcher.public
10) def get vhf data rate():
11) output = subprocess.check output([’tc’, ’-s’, ’-j’, ’class’, ’show’, ’dev’, ’r1-eth1’])
12) vhf data rate = parse ‘output’ variable to get the data rate on r1-eth1 interface
13) return vhf data rate

14) @dispatcher.public
15) def get uhf data rate():
16) output = subprocess.check output([’tc’, ’-s’, ’-j’, ’class’, ’show’, ’dev’, ’r1-eth2’])
17) uhf data rate = parse ‘output’ variable to get the data rate on r1-eth2 interface
18) return uhf data rate

19) @dispatcher.public
20) def get satcom data rate():
21) output = subprocess.check output([’tc’, ’-s’, ’-j’, ’class’, ’show’, ’dev’, ’r1-eth3’])
22) satcom data rate = parse ‘output’ variable to get the data rate on r1-eth3 interface
23) return satcom data rate

24) rpc server.serve forever()

Figure 3.15 Pseudo-code for running RPC server on Radio Host (192.168.10.1) to expose
current link data rate information of it’s interfaces

Procedure Call (RPC). We implemented a RPC server running on the Radio Host
while exposing the information on data rates to RPC clients. Figure 3.15 describe
the pseudo-code to implement this server. Relevant methods were imported from
tinyrpc framework for the server implementation using Line1,2,3,4 in the figure. We
used python ‘subprocess’ module to fork a process on these three interfaces to get
the information on data rate being shaped at. We used RPC Dispatcher (Line6)
to serialize this information, before being sent over to the RPC clients. The re-
quest made by RPC clients was forwarded to RPC server through the Web Server
Gateway Interface (WSGI) as described in Line7. Using Line8, we start RPC server
as a background greenlet events. Member functions ‘get vhf data rate’ (Line10),
‘get uhf data rate’ (Line15) and ‘get satcom data rate’ (Line20) are used to get the
information about the data rates on corresponding interfaces. The data rate value
returned by these member functions will be serialized by RPC Dispatcher and served
forever to the RPC clients using Line24.

To receive the information on current radio link data rate and adaptively shape the
data rate according to it, we wrote a REST application running on Ryu controller
acting as a RPC client forwarding HTTP requests to the RPC server as described
before. Figure 3.16 describes the pseudo-code of this REST application wherein, for
every 2 seconds we receive the information on the current VHF, UHF and SatCom
link data rate (Line10,11,12,13). Once we receive this information, we check whether
the data rate has changed on these three interfaces. If Yes, we modify the flow entry
on OVS1 as described in Line4 of Figure 3.14 to corresponding meter IDs defined in
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1) from tinyrpc.protocols.jsonrpc import JSONRPCProtocol
2) from tinyrpc.transports.http import HttpPostClientTransport
3) from tinyrpc import RPCClient
4) import time
5) import sys

6) rpc client = RPCClient(JSONRPCProtocol(), HttpPostClientTransport(’http://localhost:8080/’))
7) remote server = rpc client.get proxy()

8) try:
9) while True:
10) time.sleep(2)
11) vhf data rate = remote server.get vhf data rate()
12) uhf data rate = remote server.get uhf data rate()
13) satcom data rate = remote server.get satcom data rate()
14) if ‘there is a change in data rate’:
15) # Procedure to manipulate flow entries of flow table0 on OVS1

# to specify corresponding ‘meter id’ on meter table
15) except KeyboardInterrupt:
16) sys.exit(1)

Figure 3.16 Pseudo-code of REST application to determine the radio link quality and adap-
tively ensure QoS requirement

the meter table of OVS1 (refer Table 3.3). To POST this modification request to
OVS1, requests.post(‘http://192.168.1.101:8080/stats/flowentry/modify strict’, data
= flow entry) was used.

3.5.0.2 Adaptive Mechanism to ensure Time-of-Expiry (ToE) QoS require-
ment

To enforce Time-of-Expiry (ToE) QoS requirement for messages, we used the flow
timeout feature of OVS. The initial flow entries installed in the flow table0 on OVS1

had timeout entries specified to ‘0’ as described in Table 3.2, meaning these entries
would remain infinitely. But we can modify these timeout value of the initial flow
entries with respect to the different DSCP value entries. We wrote a REST appli-
cation to consistently monitor the number of packets matching the Match Fields in
each flow entry. When the number of packets matched exceed ‘0’, the timeout value
of the corresponding flow entry was modified to Time-of-Expiry (ToE) value of the
message as mentioned in Table 3.1. After exceeding this timeout value, the flow
entry was automatically deleted, resulting in the absence of Match Fields for the
packets from a particular message. Due to this absence, the packets from messages
exceeding ToE were dropped at OVS1. Line4 to Line12 in Figure 3.17 describe the
pseudo-code of this REST application, used to ensure ToE QoS requirement of user
data flow.
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1) import requests

2) ovsdb address = “tcp:127.0.0.1:6632”
3) requests.put(‘http://192.168.1.101:8080/v1.0/conf/switches/<datapath-id>/ovsdb addr’,

data = ovsdb address)

4) try:
5) def set timeout for flow entry():
6) while True:
7) time.sleep(1)
8) # Get the packet count matching the flow entry
9) # If the number of packets matching the flow entry is > 0:
10) # Modify the ‘hard timeout’ value of the flow entry to the corresponding ToE value
11) except KeyboardInterrupt:
12) sys.exit(1)

Figure 3.17 Pseudo-code of the REST application to ensure Time-of-Expiry (ToE) QoS re-
quirement of user data flow
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4
Evaluation

In this chapter, we discuss the experimental results of our adaptive QoS framework,
designed based on Software-Defined Networking (SDN) paradigm. Network set up
as shown in Figure 3.1 and described in the previous chapter was used to perform
experiments to quantify the performance of the proposed framework. Messages from
different Command and Control (C2) services having distinct QoS requirements were
generated and sent across the nodes in the network set up to evaluate the provision-
ing of QoS requirements by this framework. We begin with experiments to prove the
need for a traffic shaping mechanism to avoid packet loss across heterogeneous com-
munication links supporting different data rates as described in section 3.2. Then
we conduct experiments to evaluate ‘Priority’ QoS requirement for the messages
by a combination of traffic scheduling mechanisms that are available within Linux
Kernel. Using custom applications running on top of the SDN controller, experi-
ments were conducted to prove the adaptability of the proposed QoS framework in
ensuring ‘Time-of-Expiry (ToE)’ QoS requirement and shaping the traffic based on
the current available bandwidth in a tactical scenario. Drawbacks of this adaptive
mechanism were discussed along with a scope for future enhancements.

4.1 Message Generation and Logging

Messages with respect to five distinct C2 services were generated using MGEN traffic
generator with appropriate ‘Priority’ as discussed in section 3.1. These messages
were generated and sent from source host h1 (192.168.10.10) to destination hosts h2

(192.168.20.10), h3 (192.168.30.10) and h4 (192.168.40.10) using the commands as
shown in Figure 4.1. Line1 to Line5 in this figure describe the commands used to
send the messages to host h2. Similarly Line6 to Line10 and Line11 to Line15 describe
the commands to send messages to hosts h3 and h4 respectively. All these messages
were sent as a burst to these destination hosts to quantify the QoS framework’s
ability to differentiate the packets belonging to distinct services. These messages
were generated on 0.0th second and turned ‘OFF’ on the next (i.e 1.0st) second to
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1) 0.0 ON 1 UDP SRC 5000 DST 192.168.20.10/5000 PERIODIC [100 1024] TOS 0x78
2) 0.0 ON 2 UDP SRC 5001 DST 192.168.20.10/5000 PERIODIC [100 1024] TOS 0x50
3) 0.0 ON 3 UDP SRC 5002 DST 192.168.20.10/5000 PERIODIC [100 1024] TOS 0x28
4) 0.0 ON 4 UDP SRC 5003 DST 192.168.20.10/5000 PERIODIC [100 1024] TOS 0x04
5) 0.0 ON 5 UDP SRC 5004 DST 192.168.20.10/5000 PERIODIC [100 1024] TOS 0x00
6) 0.0 ON 6 UDP SRC 5005 DST 192.168.30.10/5000 PERIODIC [100 1024] TOS 0x78
7) 0.0 ON 7 UDP SRC 5006 DST 192.168.30.10/5000 PERIODIC [100 1024] TOS 0x50
8) 0.0 ON 8 UDP SRC 5007 DST 192.168.30.10/5000 PERIODIC [100 1024] TOS 0x28
9) 0.0 ON 9 UDP SRC 5008 DST 192.168.30.10/5000 PERIODIC [100 1024] TOS 0x04
10) 0.0 ON 10 UDP SRC 5009 DST 192.168.30.10/5000 PERIODIC [100 1024] TOS 0x00
11) 0.0 ON 11 UDP SRC 5010 DST 192.168.40.10/5000 PERIODIC [100 1024] TOS 0x78
12) 0.0 ON 12 UDP SRC 5011 DST 192.168.40.10/5000 PERIODIC [100 1024] TOS 0x50
13) 0.0 ON 13 UDP SRC 5012 DST 192.168.40.10/5000 PERIODIC [100 1024] TOS 0x28
14) 0.0 ON 14 UDP SRC 5013 DST 192.168.40.10/5000 PERIODIC [100 1024] TOS 0x04
15) 0.0 ON 15 UDP SRC 5014 DST 192.168.40.10/5000 PERIODIC [100 1024] TOS 0x00
16) 1.0 OFF 1

. . .
30) 1.0 OFF 15

Figure 4.1 MGEN script at the source host h1

1) mgen event “listen UDP 5000”
2) <Packet Received timestamp> <flowd-id> <Packet Sequence Number>
2) <SRC-IP> <DST-IP> <Packet Sent timestamp>

Figure 4.2 MGEN log at the destination hosts h2, h3 and h4

define the burst. Each of these flow of messages were set to use UDP as transport
protocol consisting of 100 packets each with a payload size of 1024 bytes to evaluate
the loss of packets while ensuring QoS requirements. ToS byte of these packets were
encoded with appropriate value as defined in section 3.1. Since the ToS byte is a
per-socket attribute, meaning the same ToS bits are applied to all the packets going
through the same port, distinct ports ranging from 5000 to 5014 were used in the
source host h1 to send fifteen distinct flows (i.e 1 to 15) across three destination hosts.
Line1 in Figure 4.2 represents the command to receive these messages at the hosts
h2, h3 and h4. Line2 represents the pattern of log messages received, using which
we compute packet delay (Packet Received timestamp−Packet Sent timestamp) and
packet loss (using Packet Sequence Number), and we use flow-id to quantify the
system’s ability to differentiate the five types of messages.

4.2 Experimental results

In this section, we discuss the experimental results of our adaptive QoS mechanism
over the network setup as described in Figure 3.1 and explained in the previous chap-
ter. We conducted experiments over five scenarios. First, four classes of user traffic
were sent through the network without any traffic shaping and scheduling mecha-
nism at the source host, h1; this is the baseline for our comparative study. Then for
the second scenario, we shaped the traffic using HTB Qdisc according to the data
rates supported by VHF, UHF and SatCom link, and scheduled these shaped data
flows with strict priority based PFIFO Qdisc. Both these Qdiscs were implemented
on the egress port h1-eth0 of host h1. In the third scenario, we implemented the
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hybrid priority scheduling using ETS Qdisc at h1. In the fourth, we conducted ex-
periments to adaptively shape the data flow through a combination of meter table
at OVS1 and Remote Procedure Calls (RPC) between the interfaces emulating the
radio link data rate and a REST application running on the controller to modify
the meter entries corresponding to the current link data rate. As part of the final
scenario, we present the results of ensuring ToE QoS for the messages using REST
application running on the north-bound interface of the Ryu SDN controller.

4.2.1 No traffic scheduling mechanisms

As part of the first experimental scenario, traffic shaping and scheduling mecha-
nisms were not implemented at the source host, h1. This experiment is the baseline
for our comparative study. We emulated the maximum data rate supported by a
VHF, UHF and SatCom link over interfaces r1-eth1, r1-eth2 and r1-eth3 respectively
of Radio Host (192.168.10.1) as shown in our network set up (refer Figure 3.1). As
mentioned in the previous section, a burst of messages were generated at host h1 and
sent to VHF (h2), UHF (h3) and SatCom (h4) destinations hosts over correspond-
ing egress interfaces of Radio Host, r1. Figure. 4.3 shows the End-to-End (E2E)
delay experienced by packets over VHF (left) and UHF (right) links. Packets over
VHF link experienced a delay of up-to 420 seconds while packets over UHF link
experienced up-to 20 seconds delay. Without any scheduling mechanism, all the five
messages were treated with equal priority. In addition, packet loss were computed
over both the links. Since traffic was not shaped and scheduled at the source host
h1, equal proportion of packet loss among messages was reported. While messages
over VHF link reported packet loss of 6(±1)%, over UHF link packet loss was just
1%, reported over repeated experiments. Since there was no packet loss over Sat-
Com link and E2E delay for packets was not descriptive enough to compare with the
delay over UHF link, the plot for SatCom link was not shown in the figure. Because
of no Differentiated Service (DiffServ) for messages, Priority QoS requirement was
not satisfied along with packet loss. Hence there was a need for employing a traffic
shaping and scheduling mechanism, the results of which will be discussed in the
following sections.
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Figure 4.3 E2E delay for IP packets sent over VHF and UHF links without any scheduling
mechanism
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4.2.2 Traffic shaping and strict priority scheduling mechanism

As part of our initial effort to provide Differentiated Service (DiffServ) to messages,
we considered using Priority First-In-First-Out (PFIFO) Qdisc. To avoid packet loss
during a burst of messages as we had seen in the previous experimental scenario, we
began with an attempt to include HTB Qdisc resulting in a tree structure as shown
in the Figure 3.5. Using this tree setup, traffic was shaped at the outbound interface
h1-eth0 of source host h1 with respect to the data rates supported by VHF, UHF
and SatCom links. PFIFO Qdiscs were placed under Hierarchy Token Bucket (HTB)
Qdiscs to introduce strict priority among the messages, by creating four bands (or
queues) within it, as described in the section 3.3.2.1.

Figure 4.4 shows the End-to-End (E2E) delay for packets from different messages
when traffic was shaped from 0.6 kbps (leftmost) to 9.6 kbps (rightmost) with re-
spect to the data rates supported by a VHF link. Since packets from Chat and FFT
messages were enqueued to the lowest-priority bands, packets from them were not
received until all the packets from Picture, Obstacle Alert and Medical Evacuation
are received. Packets from lower-priority messages were received only after receiving
all the packets from higher-priority messages. Packets from Chat and FFT messages
experienced the longest delay within this strict priority mechanism. While shaping
the traffic at 0.6 kbps, the first packets from these low-priority messages were not
received on the destination host h2 until 4000 seconds since they were sent, which
is a delay larger than the Time-of-Expiry (ToE) for these packets (refer Table 3.1).
Moreover, we have not considered excessive amount of high-priority traffic scenario
in this experiment, which will further delay the reception of these low-priority traf-
fic. But using this kind of scheduling mechanism makes sense when higher-priority
traffic should always take precedence over lower-priority ones. Similarly, Figure 4.5
and Figure 4.6 depicts E2E delay experienced by packets sent over the data rates
supported by UHF and SatCom links, respectively. One thing to notice by compar-
ing both the figures is that the difference in scale of E2E delay for packets through
their lowest data rate, i.e through 15 kbps and 32 kbps for UHF and SatCom re-
spectively. It clearly depicts that the packet delay reduces by half in case of SatCom
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Figure 4.4 E2E delay for IP packets with strict priority scheduling over different data rates of
a VHF link
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Figure 4.5 E2E delay for IP packets with strict priority scheduling over different data rates of
a UHF link
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Figure 4.6 E2E delay for IP packets with strict priority scheduling over different data rates of
a SatCom link

link when the data rate was shaped at almost the double than that of UHF link
data rate. Further, none of the packets from these messages were lost because of the
shaping mechanism implemented at the outbound interface of host h1. As explained
in the Section 3.3.2.2, we can combine the priority scheduling with fairness based
scheduling mechanism to avoid bandwidth starvation for lower-priority traffic using
ETS Qdisc. The result of which will be discussed in the next section.

4.2.3 Traffic shaping and hybrid priority scheduling mechanism

In this section, we discuss the effect of including hybrid traffic scheduling mecha-
nism using Enhanced Transmission Selection (ETS) Qdisc with it’s configuration as
described in section 3.3.2.2. Figure 4.7 shows the End-to-End (E2E) delay for the
packets from different messages when traffic was shaped with respect to the data
rates supported by a VHF link (i.e 0.6, 1.2, 2.4, 4.8 and 9.6 kbps). ETS Qdisc
was configured to schedule the packets from Medical Evacuation and Obstacle Alert
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Figure 4.7 E2E delay for IP packets with hybrid priority scheduling over different data rates
of a VHF link

messages in strict priority order, and packets from Picture, Chat and FFT messages
in a fairness based scheduling mechanism. Because of this configuration, packets
from fairness based scheduling mechanism were only received after receiving all the
packets from strict priority mechanism. We term this combination of priority and
fairness as hybrid scheduling mechanism. We considered to depict the delay for
packets over VHF links since the effect of introducing this hybrid scheduling mech-
anism has better visibility over low data rates when compared with that of higher
data rates.

Bandwidth was equally shared among the two queues (or bands) that were reserved
for fairness based scheduling. One band was configured to queue the packets from
Picture message, while the other was configured to queue the packets from both Chat
and FFT messages. Because of this configuration, packets from Picture message
were received sooner than the packets from the other two messages even though the
first packets from all these three messages were received simultaneously. Further,
to prove that all the packets from these five messages were categorized and placed
onto respective bands as described in section 3.3.2.2, we continuously monitored the
occupancy of these bands in packets, over time. Figure 4.8 shows the occupancy of
all the four bands in the two ETS Qdiscs while shaping the data rate with respect to
the rates supported by VHF and UHF links, simultaneously from lowest to highest.
100 packets from each Medical Evacuation, Obstacle Alert and Picture messages
were enqueued and dequeued from bands: band-0, band-1 and band-2 respectively.
Total 200 packets with 100 each from Chat and FFT messages were enqueued and
dequeued from band-3.

4.2.4 Adaptive Traffic shaping mechanism using meter table of
Open vSwitch

In this section we discuss the experimental results of adaptively shaping the traffic
using meter table feature of Open vSwitch (OVS) based on the current link data rate
on the interfaces of Radio Host as described in section 3.5.0.1. We also show the
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Figure 4.8 Occupancy of packets on ETS Qdisc bands over time through VHF and UHF links

experimental result of addressing the drawback of this adaptive shaping using meter
table, by excluding shaping by meter table and replacing it with HTB Qdiscs at the
OVS egress port. The experiments in this section was conducted on the assumption
that, the applications running on the north-bound interface of the SDN controller
should have access to the information about the current modulation (or waveform)
being used in the radio.

To study the effect of adaptive shaping capabilities of meter table, we conducted five
experiments with respect to the data rates supported by VHF, UHF and SatCom
links. Messages that were generated and sent from source host h1 were shaped and
scheduled using ETS Qdisc at interface h1-eth0, with respect to the maximum data
rates supported by these links. Then, in each of these five different experiments, we
changed the data rates on interfaces: r1-eth1, r1-eth2 and r1-eth3 to emulate the five
distinct data rates (from highest to lowest) supported by VHF, UHF and SatCom
links respectively (refer Figure 3.1). Considering these changes on the interfaces,
using already installed rate limiting entries in the meter table of OVS1 as described
in Table 3.3, we direct the flow towards corresponding meter IDs to shape the data
rate with respect to the data rate emulated by these interfaces.
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Figure 4.9 Packets received when traffic was shaped by utilizing meter table of OVS by manual
re-directing to corresponding meter entries

As part of the first experiment, we shaped the data rate on these interfaces to
emulate the highest data rate supported by corresponding links. Then we modified
the flow entries in flow table to direct the flow destined towards SatCom (h4), UHF
(h3) and VHF (h2) hosts to meter IDs 1, 6 and 11 respectively. In the subsequent
four experiments, we reduced the data rates on these interfaces and similarly as
before we modified flow entries to re-direct them towards (2, 7, 12), (3, 8, 13), (4, 9,
14) and (5, 10, 15) destined to h4, h3 and h2 hosts respectively. Figure 4.9 shows the
packets received over these five different experiments while shaping the traffic using
meter table. As we can notice that there were significant packet loss over lower data
rate meter IDs. Table 4.1 list the number of packets received on host h4 when the
flow was directed towards meter IDs: 1, 2, 3, 4 and 5 representing the data rates
supported by a SatCom link. Similarly, Table 4.2 list the number of packets received
on host h3 while directing the flow towards meter IDs: 6, 7, 8, 9 and 10 representing
the data rates supported by a UHF link. To conclude, Table 4.3 list the number of
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Service
Packets

Packets received over SatCom

sent
link data rates (kbps)

32 64 128 256 512

Medical Evacuation 100 11 25 52 100 100

Obstacle Alert 100 7 13 26 58 100

Picture 100 8 13 26 52 100

Chat 100 6 4 42 82 100

FFT 100 6 22 8 16 100

Total Packets Received/500 38/500 77/500 154/500 308/500 500/500

Table 4.1 Loss of packets when traffic was shaped by meter table over SatCom link

Service
Packets

Packets received over UHF

sent
link data rates (kbps)

15 30 60 120 240

Medical Evacuation 100 8 18 37 75 100

Obstacle Alert 100 7 13 26 50 100

Picture 100 6 12 25 52 100

Chat 100 6 4 40 16 100

FFT 100 7 22 10 82 100

Total Packets Received/500 34/500 69/500 266/500 276/500 500/500

Table 4.2 Loss of packets when traffic was shaped by meter table over UHF link

Service
Packets

Packets received over VHF

sent
link data rates (kbps)

0.6 1.2 2.4 4.8 9.6

Medical Evacuation 100 44 26 40 50 100

Obstacle Alert 100 7 33 23 49 100

Picture 100 0 0 23 52 100

Chat 100 0 0 36 16 100

FFT 100 0 18 6 82 100

Total Packets Received/500 51/500 77/500 128/500 249/500 500/500

Table 4.3 Loss of packets when traffic was shaped by meter table over VHF link

packets received on host h2 by directing the flow towards meter IDs: 11, 12, 13, 14
and 15 corresponding to the data rates supported by a VHF link.

We wrote a REST application to consistently monitor the number of packets flowing
through all the meter IDs at a time, throughout the experiment. Figure 4.10 shows
the number of packets that went through the meter IDs in a given experiment (from
1 to 5). Notice that all the 100 packets from five messages (summing upto 500)
pass through the specified meter IDs and none of them through the rest of the IDs.
The result was consistent throughout five different experiments having directed the
flow towards different meter IDs. Even though all the packets pass through the
meter IDs, there was significant packet loss proving the fact that these packets were
dropped by the meter table while shaping. The reason for the drop was because of



46 4. Evaluation

512 kbps

240 kbps

10 kbps

256 kbps

120 kbps

5 kbps

128 kbps

60 kbps

3 kbps

64 kbps

30 kbps

2 kbps

32 kbps

15 kbps

1 kbps

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

0
10

0
20

0
30

0
40

0
50

0 0
10

0
20

0
30

0
40

0
50

0 0
10

0
20

0
30

0
40

0
50

0 0
10

0
20

0
30

0
40

0
50

0 0
10

0
20

0
30

0
40

0
50

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Packet

M
e

te
rs

size a 16 Network SatCom UHF VHF

Figure 4.10 Packets directed through different meter IDs of a meter table throughout different
experiments

the lack of queuing mechanism by HTB Qdiscs that are implemented within meter
IDs. They have no mechanism to queue the packets when packets arrive at a rate
higher than the specified rate at which these packets have to be shaped. Thus, we
conclude that the traffic shaping using meter table of Open vSwitch is not suitable
in it’s current form of implementation for low-bandwidth networks such as tactical
networks.

Instead of reducing the data rates over five different experiments, we reduced the
data rates (from highest to lowest) on interfaces of Radio Host r1 within a single
experiment for an interval of 40 seconds for each data rate. A REST application run-
ning on the SDN controller was able to recognize the data rate change on interfaces
of r1 and adaptively modified the flow entry to direct the flow towards correspond-
ing meter IDs representing the change in data rate, to be shaped at. The design of
this adaptive mechanism is described in section 3.5.0.1. Figure 4.11 illustrates this
adaptive shaping mechanism over VHF link while depicting the number of packets
received over the duration of the experiment. Bottom part of this figure shows the
adaptive shaping capability of the meter table. The experiment started with shaping
the data rate with respect to 9.6 kbps, and after an interval of 40 seconds, shaping
was reduced to 4.8 kbps followed by reducing the data rate until 0.6 kbps over a span
of 40 seconds for each data rate. As we can notice in the bottom part of the figure,
packet loss increased at each interval of data rate change depicting the inefficacy of
meter table in shaping the data rate.

To prove that by implementing a queuing mechanism at the HTB Qdisc within these
meter entries to queue the packets arriving at a higher rate, we modified this adaptive
shaping mechanism by replacing shaping by meter table to shaping by HTB Qdisc at
the egress port of OVS1. The HTB Qdisc at this egress port, queue the packets when
they arrive at a higher speed, using the queue attached to this outbound interface.
In the upper part of the same Figure 4.11, we can visualize this queuing of packets
from Medical Evacuation message by HTB Qdisc at the switch egress port, when
link change happens.
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Figure 4.11 Comparison of adaptive shaping mechanism by meter table versus HTB Qdisc at
Open vSwitch egress port over VHF link

4.2.5 Adaptive Mechanism to ensure Time-of-Expiry (ToE) QoS
requirement

In this section we discuss the results of ensuring ToE QoS requirement for the mes-
sages from distinct C2 services. Using this mechanism as described in section 3.5.0.2,
we conducted five experiments with respect to the data rates (maximum to mini-
mum) supported by VHF and UHF radios. Messages that were generated and sent
from source host h1, were shaped using HTB Qdiscs and scheduled using ETS Qdisc.
These messages were sent across VHF and UHF links to destination hosts h2 and
h3 respectively. Adaptive traffic shaping was not performed on the OVS, instead
the traffic was shaped at the source host to avoid any packet loss as described in
section 4.2.3.

To enforce ToE QoS requirement for messages, we used flow timeout feature of OVS.
This adaptive mechanism to ensure ToE for messages was designed and implemented
as described in section 3.5.0.2. To visualize the effect of implementing this mech-
anism as shown in Figure 4.12, we considered to depict the comparison in number
of packets received when ToE was applied (bottom) versus not being applied (top)
over different rates of a VHF link. While shaping at the maximum data rate (9.6
kbps) at host h1 and by employing ETS Qdisc, the first packets from Chat and FFT
messages were received only after 150 seconds when ToE was not applied. Since this
duration was more than the ToE value (refer Table 3.1) for both these messages, not
a single packet was received from either of the two messages when ToE was applied.
Similarly, packets from Obstacle Alert message was dropped after 150 seconds (it’s
ToE value). While shaping at 4.8 kbps, none of the packets from Obstacle Alert
message was received since the first packet from this message arrives after 150 sec-
onds when ToE was not applied. Accordingly, ToE QoS requirement was ensured
for packets from Medical Evacuation (ToE - 300 seconds) and Picture (ToE - 3600
seconds) messages while shaping over low data rates. The effect of ensuring ToE
QoS requirement for messages over UHF links could be visualized in Figure 4.13.
Further in Table 4.4 we list the number of packets received on host h3 (15, 30, 60,
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Figure 4.12 Packets received when compared with and without ToE QoS requirement applied
over VHF links

120 and 240 kbps) and h2 (0.6, 1.2, 2.4, 4.8 and 9.6 kbps) when the data rate was
shaped with respect to UHF and VHF links along with the corresponding ToE for
the messages.

One thing to note in this mechanism of ensuring ToE for messages is that, in our
experiments we consider a burst of all the five messages to which ToE has to be
ensured. But in real tactical scenarios these messages could be generated in different
patterns. Since the timer for ensuring this ToE begins when the switch sniffs the first
packets from these messages, the timer value does not depict the exact time since
this message was generated. Also if packets spend more time while being shaped at
the source host, the timer value could not be compared with the message generation
timestamp. So this mechanism should be improved to consider message generation
timestamp and offset the timer value according to it.
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Figure 4.13 Packets received when ToE QoS requirement applied over UHF links

Service Packets
Packets received over data rate (kbps)

ToE

sent 0.6 1.2 2.4 4.8 9.6 15 30 60 120 240 (sec)

Medical
Evacuation

100 30 43 94 100 100 100 100 100 100 100 300

Obstacle
alert

100 0 0 0 0 76 100 100 100 100 100 150

Picture 100 38 100 100 100 100 100 100 100 100 100 3600

Chat 100 0 0 0 0 0 56 64 100 100 100 120

FFT 100 0 0 0 0 0 57 64 100 100 100 120

Table 4.4 Loss of packets when ToE QoS requirement is applied for the messages
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5
Conclusion

Supporting End-to-End (E2E) Quality-of-Service (QoS) requirements of user data
flow in heterogeneous Tactical Networks (TNs) is a challenging task since the net-
works are characterized by low bandwidth, high delay, and constant change in the
link conditions due to high degree of mobility among tactical nodes. The QoS mech-
anisms that are implemented in the network devices should be adaptive enough to
serve the QoS requirements depending on the link conditions with minimal human
intervention. In this sense, the network flexibility features provided by Software-
Defined Networking (SDN) paradigm was explored in ensuring QoS requirements of
the user data flow depending on the heterogeneous link conditions. Therefore the
work done in this thesis focuses on the QoS mechanisms for TNs based on SDN
technology. An adaptive mechanism was introduced in this thesis, by leveraging
SDN concept to ensure/enforce QoS requirements from user data flows in tactical
networks. Using a traffic generator, messages emulating distinct Command and
Control (C2) services were generated to test the fulfilment of the QoS requirements
for these messages by the adaptive mechanism developed in our QoS framework
within a SDN network emulation platform. Features within the OpenFlow switch
were used to distinguish the flows coming from distinct messages based on their
Differentiated Services Code Point (DSCP) value of the packet header. A network
application running on the SDN controller was used to continuously sniff the packets
on the flow tables of the OpenFlow switch, and flow rules were modified to ensure
Time-of-Expiry (ToE) QoS requirements for these distinct flows. Different data rates
supported by radio modulations of VHF, UHF and SatCom were emulated on the
interfaces of a container host depicting the heterogeneous network set up in a tactical
scenario. Assuming that the SDN controller should have access to the information on
the current data rate in use on these interfaces, a network application was developed
to continuously request this information from the network interfaces and adaptively
shape the data flow with respect to that, using meter table of the OpenFlow switch.
With experimental results, we prove that the adaptive traffic shaping using meter
table, in it’s current form of implementation is not suitable for low-bandwidth and
highly dynamic networks such as tactical networks. Also we explored the traffic
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shaping capabilities of HTB Qdisc, implemented within Linux Kernel. Further, we
studied the effect of ensuring ‘Priority’ QoS requirement for four different classes of
messages by using strict priority based PFIFO Qdisc. And we introduced a notion of
hybrid scheduling mechanism combining strict priority and fairness based schedul-
ing using recent ETS Qdisc, implemented within the Linux Kernel. The proposed
SDN based QoS framework introduced in this thesis was validated with experimental
results by a network topology depicting a minimal ever-changing network scenario,
developed within a SDN emulation platform.

5.1 Future Work

The experiments that were conducted in this thesis considered to evaluate the QoS
framework based on a burst of distinct messages. To extend the validation of the
framework, messages could be generated in different patterns as in case of our pre-
vious investigation in [39]. The framework could also be tested with the different
message sizes from distinct services. The framework was tested by periodic changes
in the link conditions which could be extended by testing with random patterns of
link changes as experimented in our previous investigation [39]. The network ap-
plication ensuring ToE for messages could be improved to consider and offset the
time with respect to the time at which these messages were generated. Further, the
hybrid scheduling mechanism could be tested with various configurations. Finally,
a multi-topology routing similar to the one introduced in [29] could be maintained
by using different flow tables for low and high data rate QoS topologies.

5.2 Publications

The publications related to the this thesis are as follows:

• Eswarappa, S. M., Rettore, P. H., Loevenich, J., Sevenich, P.,
and Lopes, R. R. F. Towards adaptive QoS in SDN-enabled Heterogeneous
Tactical Networks. In International Conference on Military Communications
and Information Systems (ICMCIS) (Oeiras, Portugal, May 2021)

• Loevenich, J., Lopes, R. R. F., Rettore, P. H., Eswarappa, S. M.,
and Sevenich, P. Maximizing the probability of message delivery over ever-
changing communication scenarios in tactical networks. IEEE Networking Let-
ter (March 2021), 1–5. early access, doi:10.1109/LNET.2021.3066536

• Lopes, R. R. F., Loevenich, J., Rettore, P. H., Eswarappa, S. M.,
and Sevenich, P. Quantizing radio link data rates to create ever-changing
network conditions in tactical networks. IEEE Access (September 2020), 1–20

• Balaraju, P. H., Rettore, P. H., Lopes, R. R. F., Eswarappa, S. M.,
and Loevenich, J. Dynamic adaptation of the user data flow to the changing
data rates in VHF networks: An exploratory study. In 11th IEEE International
Conference on Network of the Future (NoF) (Bordeaux, France, Oct 2020),
pp. 1–9
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