
Institute of Computer Science IV

University of Bonn

Bachelor of Science in Computer Science

A Comparison of Adversarial Attacks against Reinforcement
Learning based Applications in Tactical Networks

Bachelor’s Thesis

Submitted by

Tobias Hürten
Matriculation Number: 3335135

Email: s6tohuer@uni-bonn.de

Examiner: Prof. Dr. Michael Meier1 and Dr. Paulo H. L. Rettore2

Supervisor: Johannes Loevenich2

1Head of Institute Computer Science IV, University of Bonn, Germany
1Head of Institute, Fraunhofer FKIE, Wachtberg, Germany

Email: meier@cs.uni-bonn.de
2Research Scientists, Fraunhofer FKIE, Bad Godesberg, Germany
Email: [paulo.lopes.rettore, johannes.loevenich,] @fkie.fraunhofer.de

In collaboration with the Fraunhofer Institute for Communication, Information Processing
and Ergonomics (FKIE), Bonn, Germany

February 14, 2023

mailto:s6tohuer@uni-bonn.de
mailto:meier@cs.uni-bonn.de
mailto:paulo.lopes.rettore@fkie.fraunhofer.de
mailto:johannes@fkie.fraunhofer.de

2 Tobias Hürten

1 Abstract

The present thesis explores the application of Reinforcement Learning (RL) methods to ad-
dress stability and reliability challenges for routing problems in tactical networks. However,
this approaches are susceptible to security risks in the form of adversarial samples that can
manipulate the agent’s observations and cause sub-optimal behavior, leading to unstable con-
nections and packet loss. Therefore, this thesis provides evidence of the vulnerability of these
applications to attacks and identifies key differences in the suite of attack methods based on
metrics such as effectiveness, runtime, and detectability.

2 Acknowledgements

First and foremost I would like to thank my examiners Prof. Dr. Michael Meier and Dr. Paulo
H. L. Rettore, without whom this thesis would not have been possible.

I am particularly thankful to my supervisor Johannes Loevenich, whose advice and support
have been invaluable and who enriched my scientific career immensely.

Moreover, I am grateful to my fellow student researchers at Fraunhofer FKIE, namely
Jonas Bode, Luca Liberto and Florian Spelter. Our cooperation over the past year laid the
groundwork for this thesis and affected its quality considerably.

Tobias Hürten 3

Contents

1 Abstract 2

2 Acknowledgements 2

3 Introduction 4

4 Background 4
4.1 Reinforcement Learning . 5

4.1.1 Terminology . 6
4.1.2 Finite Markov Decision Processes . 9
4.1.3 Returns and Episodes . 10
4.1.4 Policies and Value Functions . 11
4.1.5 Monte Carlo methods . 13
4.1.6 Temporal Difference Learning . 15
4.1.7 Policy Gradient methods . 16
4.1.8 Actor-Critic methods . 17

4.2 Adversarial Attacks . 17
4.2.1 Fast Gradient Sign Method . 17
4.2.2 Adversarial Attacks on Neural Network Policies 19

4.3 Mobile Ad hoc Networks . 19

5 Problem 20
5.1 The Environment . 20
5.2 Restrictions . 22

6 Methodology 22
6.1 Noise constraints . 22
6.2 Attack Methods . 24

6.2.1 One-step methods . 24
6.2.2 Iterative methods . 27
6.2.3 Stochastic Gradient Descent methods 27
6.2.4 Momentum boosted adversarial attacks 28
6.2.5 Adversarial policy attacks . 29

6.3 Attack Strategies . 31

7 Results 32
7.1 Configuration . 32
7.2 Evaluation . 35

7.2.1 Effectiveness . 35
7.2.2 Detectability . 39
7.2.3 Transferability . 41
7.2.4 Runtime . 45

8 Conclusion 47

9 Appendix A 50

4 Tobias Hürten

3 Introduction

Mobile ad hoc networks (MANETs) are becoming increasingly prevalent due to their availabil-
ity and flexibility in both private and tactical network applications. However, secure and sta-
ble connections are critical in tactical networks to establish communication between military
assets and personnel. Therefore, in such applications, the quality of each node significantly
impacts the overall stability of the network.

Recent research on Mobile Ad Hoc Networks (MANETs) has attempted to incorporate arti-
ficial intelligence (AI) concepts to assess network parameters and determine a safe and stable
transmission path. Especially Reinforcement Learning (RL) approaches have gained signif-
icant attention in network planning, including military applications. The present research
aims to leverage RL agents to quantify the link stability and optimize transmission routes.
[1][2]

However, when applying such methods in highly security military environments, these
advancements need to be monitored for potential vulnerabilities. This thesis aims to expand
previous investigations into one such novel attack vector, namely adversarial attacks. These
attacks intercept the deployed agent’s observation by infiltrating or jamming the network
from outside and alter network parameters in a way that manipulates the victim agent to
misjudge the stability of certain network paths. [2]

The remainder of this thesis is structured as follows. Section 4 provides the necessary
background knowledge to understand how RL algorithms can solve learning tasks through
agent-environment interactions and how they can be applied to MANETs. Section 5 formally
defines the problem by outlining the environment and its restrictions, followed by the intro-
duction of a set of adversarial attacks in Section 6. Section 7 presents the results of a set
of quantitative experiments that investigate the attacks’ performance with respect to a set of
metrics. Finally, Section 8 summarizes the results and presents prospects for future research
on adversarial attacks and defensive strategies to reduce the vulnerability of these attack
vectors.

4 Background

Machine Learning (ML), as a subdomain of computer science, covers the idea of digital com-
puters carrying out tasks without being explicitly programmed how to do so. The term was
coined by Arthur L. Samuel in 1959. At the time he stated that a lot of tasks that were still
carried out by human beings required close to no intellect, but still included some degrees of
learning. Therefore it was aimed to replace the need of humans for these mundane tasks by
having digital computers undergo a process that - in the context of living organisms - could
only be described as learning. Samuel motivated two concepts of achieving this goal: the first
he coined "general-purpose learning machines", that learned based on rewards or penalties
but was deemed unlikely to be realized at the times. Specifically when keeping in mind the
different magnitude of complexity between already existing networks and the actual neurol-
ogy of living organisms such a machine was considered unrealistic. The second concept on
the other hand was that of a network, that was designed to learn only specific things. [3]

Tobias Hürten 5

Figure 1. Typical agent-environment interaction: the agent takes action a ∈ A in state
s ∈ S, whereupon it is presented a new state s′ ∈ S and a reward ∈ R.

As of today the field of ML underwent much more research, as well as computer science
in general, which allowed for the development of machines that are capable of much more
complex tasks. Hence now Samuel’s first approach of a general learning machine is not only
realizable, but already being deployed in varying fields.

4.1 Reinforcement Learning

RL is a subdomain of ML, together with supervised and unsupervised learning. While the
latter seem to summarize the field sufficiently, RL cannot be considered either of these fields
since RL algorithms on one hand do not receive correct data-label pairs, but on the other do
not learn a hidden underlying structure either. They rather try to maximize some numerical
value called the reward.

The general idea derives from human learning from an early age, as infants have no explicit
teachers for most of their learning procedure. More often than not, they seem to execute
actions at random and interact with their surroundings by doing so, only receiving some
kind of feedback afterwards, which will reassure the action or decrease the probability of a
future repetition by some consequence. This makes RL the ML approach that comes closest to
actual human learning as already described by Samuel in 1959 [3], even though he deemed
the general purpose machine unfeasible at the time.

Hence two key features of RL are trial-and-error-search and delayed rewards meaning the
trial of different actions and observing the feedback or reward, which itself depends on the
reward of the next state and therefore all subsequent states.

A commonly described dilemma, that is unique to RL, is that of exploration vs exploita-
tion. Since RL approaches learn by exploring different actions and observing their outcome,
exploration is an essential part of RL, however the overarching goal of any learning task is
to capitalize on past experience. This concept of exploitation stands in direct contrast to
the aforementioned exploration. While it makes sense to bring this dilemma up now, as it
perfectly describes the core trade off in RL, possible solutions will be presented in a later
section.

Overall, RL is an intuitive concept in which real world applications are deeply integrated
into the whole procedure of learning: agents are goal driven entities that interact with their
surroundings through actions and are then presented with a new changed state. [4]

6 Tobias Hürten

4.1.1 Terminology

While a lot of these concepts will be introduced in a more mathematical fashion beginning
with Section 4.1.2, it is helpful to firstly have an intuitive idea of how they work.

As already described the RL model is defined by its actor-environment duality. Further-
more, an interaction between the two can be sufficiently described by four features: a state
that contains information about the environment, an action that is chosen by the agent, the
reward signal that depends on both the selected action and the current state, as well as the
following state that describes the environment after the action was taken. Note that con-
structing and changing states as a problem is part of constructing and defining the environ-
ment, not the RL process itself. States are formally defined using Markov Decision Processes
(MDPs) in Section 4.1.2. [4]

The reward defines the overarching goal or conversely, the overarching goal defines how
to compute the numerical value that is the reward. Hence the reward is chosen in a way,
that by maximizing it, the agent can learn how to solve the problem, which is defined by the
environment. Sutton et al. (2018) [4] compare the reward to an organism’s sense of pleasure
and pain since just like these phenomenon, the reward can be of positive or negative nature.
Generally, it is desirable that, throughout the learning process, those actions that yielded
smaller or even negative rewards should become less likely to be performed again, while the
probability of those with large, positive rewards should increase.

The decision making of an RL model is referred to as its policy, which is essentially the
behavioral code of the agent and decides which action to perform for a given state. It can
therefore be interpreted as a mapping from state to action. Sutton et al. [4] suggest, that the
policy may be a simple table lookup, a function that assigns values or a complex computation
like a decision tree search. Furthermore literature differentiates between stochastic and de-
terminant policies. While the latter returns a definite action for a given state, most real life
applications involve stochastic policies, that yield probabilities with which each of the actions
is performed for that state.

To solve the RL problem, an agent is explicitly maximizing the reward over all interactions
with the environment. Given a state St at time step t the expected reward of an arbitrary
action At can be written as

q∗(a) = E[Rt|At = a]. (1)

Since RL does not work with a teacher that could explicitly tell the values of each of
the actions, the true values q∗ are unknown. Thus the model has to work with estimates,
otherwise the identification of the single action that yields the best rewards would be a trivial
problem. The so called value function Q can estimate this cumulative sum of rewards over
future states, beginning with the current state. These functions therefore indicate long-term
benefits of certain actions given a state. To further build upon their previous analogy, the
authors of [4] describe pleasure and pain as intermediate rewards, while value functions
imitate a more founded and informed judgement. For example the consumption of sweets
and candy might lead to immediate pleasure, while an informed, balanced diet will bring
long term health benefits.

Whereas rewards are received as feedback from the environment, values have to be es-
timated and re-estimated from a sequence of observations called trajectory. Ideally these

Tobias Hürten 7

estimates would be close to q∗(a), the actual value of an arbitrary action. Sutton et al. [4]
initially motivate a very basic way of estimating values by averaging over all rewards, that
were received for that action so far:

Qt(a) :=
sum of rewards when a taken prior to t

number of times a taken prior to t
. (2)

However, the inner workings of Q can vary vastly, it might for example be a simple ta-
ble, that contains values for reach state-action pair - thus usually referred to as Q-table - or
compute the values in a similar way as Equation 2. Therefore, throughout the three main
components of an RL model - agent, environment and value estimation function - the latter
is by some considered to be the most important one. Either way, a method to efficiently com-
pute these value estimates is probably the most defining component of every RL approach.
[4]

So called model-based methods include a fourth component: a model of the environment,
that is learned and then used to predict the next states given a state-action pair. The opposite
of this type of RL approaches are model-free methods.

The most intuitive method to select actions is by following a greedy policy: select the
action whose estimates are greatest. These actions are called greedy actions, of which there
has to be at least one. Such greedy action selection means exploiting the current policy and
can be expressed as:

At := argmax
a

Qt(a). (3)

To further improve the current policy however, it is necessary to explore new actions in
addition to exploiting previous experience. This leads to the aforementioned exploitation-
exploration dilemma, that is so characteristic for RL methods. The dilemma comprises that
exploitation and exploration are mutually exclusive since it is impossible to explore new
actions while greedily following the current policy. Hence it is sometimes justified to put up
with a worse immediate reward to try out a new action, that might yield a larger value in
the long run, which can then be exploited over and over again. One possible solution to the
dilemma is using a so called ϵ greedy policy: the current policy is exploited greedily only with
probability 1 − ϵ. With the remaining probability of ϵ a new random action is selected and
explored, and therefore considered in the following policy update. A policy that uses a rather
small ϵ (e.g. ϵ = 0.01) will improve more slowly, compared to a model using a larger ϵ (such
as ϵ = 0.1), however would eventually perform better or at least more consistently because
the one with ϵ = 0.1 will still only exploit its policy with a probability of 90%, even if the
value estimation was very close to q∗. [4]

This suggests that a larger ϵ is useful at an early stage of the training phase, but might
grow to be more of a hindrance once the policy is well developed and optimized. Hence it
can be practical to decay ϵ over the course of the learning process. That being said, for a
lot of RL problems the true action-values can change over time, making exploration relevant
regardless of how well developed the agent is.

8 Tobias Hürten

Since storing the reward for every time an action was performed can rapidly become mem-
ory intensive, the authors of [4] advise to compute the values incrementally:

Qn+1 :=
1

n

n∑
i=1

Ri

=
1

n

(
Rn +

n−1∑
i=1

Ri

)

=
1

n

(
Rn + (n− 1)

1

n− 1

n−1∑
i=1

Ri

)
=

1

n
(Rn + (n− 1)Qn)

=
1

n
(Rn + n ·Qn −Qn)

= Qn +
1

n
[Rn −Qn] (4)

This update rule follows the general form:

NewEstimate← OldEstimate+ StepSize [Target−OldEstimate], (5)

which can be recognized later in Section 4.1.4. Note that the Target is a desirable update di-
rection that aims to reduce the estimate error [Target−OldEstimate]. The constant StepSize
or learning rate - often denoted as α - discounts rewards that lie back in the past. Equation 6
demonstrates how α is applied recursively:

Qn+1 = Qn + α[Rn −Qn]

= α ·Rn + (1− α) ·Qn

= α ·Rn + (1− α)[α ·Rn−1 + (1− α) ·Qn−1]

= α ·Rn + (1− α) · α ·Rn + (1− α)2 ·Qn−1

...

= (1− α)n ·Q1 +
n∑

i=1

α · (1− α)n−iRi (6)

Since 1 − α < 1 this weight decays exponentially with each recursive step, which is why
this method of averaging is often called exponential recency-weighted average.

As for value initialization Sutton et al. [4] motivate optimistic initial values since these
will result in disappointing actual rewards, whatever action is selected. This in return leads
to the trial of new actions until the values are lowered by following the update rule, which
encourages exploration even for truly greedy action selection, as can be seen in Figure 2.
This however does not account for non stationary problems with changing true values since
initialization only happens once.

An alternative way to select actions, other than using action-value estimates, is by exploit-
ing an action preference function. Such a function assigns a numerical value to each action

Tobias Hürten 9

Figure 2. Different value initialization approaches to demonstrate how optimistic initial
values encourage exploration. In the beginning each new action will yield a disappointing

reward because the values are initialized too optimistically, leading to the trial of new
actions. Both approaches use the same constant step-size α = 0.1. [5]

that can no longer be interpreted in terms of reward but only relative to other actions. The
action probabilities can then be computed according to a soft-max distribution:

Pr{At = a} := eHt(a)∑k
b=1 e

Ht(b)
:= πt(a), (7)

reflecting the probability of taking action a at time step t. Such an action preference func-
tion will become relevant for certain attack strategies in Section 6, when attacks are only
performed if the victim agent has a high preference for a specific action over the others. [4]

4.1.2 Finite Markov Decision Processes

MDPs formally define the RL problem. They hence mathematically describe the interaction
of the RL model with the environment through rewards, actions and states. As already men-
tioned in Section 4.1, the two key features of MDPs are therefore the agent and the environ-
ment. A typical interaction has the agent observe the environment’s state and perform an
action which changes said state to in turn provide the agent with a new observation. Addi-
tionally the environment presents the agent a reward, some numerical value, that rates the
chosen action given the state and which is to be maximized to solve the underlying prob-
lem. The aforementioned interaction is depicted in Figure 3, which also emphasizes its cyclic
nature.

More formally, at each time step t out of a sequence of time steps the agent is presented a
state St ∈ S (also called observation) and is asked to choose an action At ∈ A, after which
it will receive a reward Rt+1 ∈ R and observe the environment in a new state St+1. This
sequential interaction can then be formally expressed as a trajectory:

S0, A0, R1, S1, A1, R2, S2, A2, R3, (8)

In finite MDPs, which this thesis and most related work is focused on, each of these in-
troduced sets S,A and R has a finite magnitude and therefore a finite number of elements.

10 Tobias Hürten

Figure 3. Agent-environment duality in an MDP. [5]
The agent is provided with a state St, based on which it selects an action At and is in return

again presented with a new (subsequent) state St+1, as well as a reward signal Rt+1.

Hence a transition (s, a)→ (s′, r) has a specific probability that can be expressed as a function
p : S ×R× S ×A → [0, 1]:

p(s′, r|s, a) := Pr{St = s′, Rt = r|St−1 = s, At−1 = a}, (9)

for all s′, s ∈ S, r ∈ R and a ∈ A, indicating the probability of landing in state s′ with
reward r given action a was chosen in state s. Note that some literature prefers to write
a ∈ A(s), denoting all actions that can be possibly performed in state s, however considering
the probability of performing all other actions that are inA but not inA(s) will simply receive
a probability of 0, both of these are equivalent.

A very significant part of formalizing the RL problem in this manner is that each state has
the Markov property, meaning each state s contains all future critic information about past
transitions. Therefore the probability of a transition at time step t only depends on the last
observed state St−1 and action At−1, as opposed to the whole trajectory up to t. [4]

4.1.3 Returns and Episodes

As aforementioned, the idea of this interaction-based trial-and-error learning is maximizing
some numerical value called the reward. More specifically this reward is to be maximized
over a trajectory of transitions - meaning the agent strives to maximize the cumulative re-
ward. This concept can be formalized as a function over the reward called the return which
in its most simple version can be defined for a trajectory over time steps t = 0, 1, ..., T as:

Gt := Rt+1 +Rt+2 +Rt+3 + ...+RT . (10)

Note that this definition makes sense for episodic scenarios, where each trajectory will un-
deniably end in a terminal state and resetting the environment to run another episode will
no longer take into account the terminated trajectory. In other scenarios the trajectories and
therefore the return might very well be infinite:

Gt :=
∞∑
k=0

Rt+k+1. (11)

Tobias Hürten 11

Using this equation the return can also be expressed recursively:

Gt :=
∞∑
k=0

Rt+k+1

= Rt+1 +Rt+2 +Rt+3 + ...+RT

= Rt+1 +Gt+1, (12)

which allows the return to only depend on the immediate reward and the return of the
following time step t + 1. This has significant implications for RL algorithms, as will be seen
in Section 4.1.4.

Another important concept regarding the return is discounting. Even though the agent is
to maximize the cumulative reward, often times it is more sensible to prefer close rewards
over those that lie far in the future. This idea can be formally defined as discounted return:

Gt := Rt+1 + γRt+2 + ... = Rt+1 + γGt+1 =
∞∑
k=0

γkRt+k+1, (13)

where γ ≤ 1 is called the discount factor that decreases the impact of rewards the further in
the future they are. γ = 1 is equivalent to the previous return in Equation 11, while γ = 0
corresponds to a return function that only values the immediate reward. Note that for γ < 1
the expression γk converges to 0, meaning the return is finite even if T =∞. [4]

4.1.4 Policies and Value Functions

Once again, the concept of policies was already touched upon in Section 4.1.1. Knowing
that value functions are estimators that can evaluate either states or state-action pairs and
having defined the expected return as a metric to quantize how good a state or state-action
pair is in Section 4.1.3, it is no surprise that value functions are only defined with respect
to to a specific policy. This is necessary since future rewards depend on future states - and
thus future actions which in return are chosen depending on the current policy. Sutton et al.
[4] define a policy π as a function that maps states to probabilities of selecting each possible
action. Thus π(a|s) ∈ [0, 1] is the conditional probability of selecting action a in state s. A
specific RL implementation is mostly defined by its method for value estimation and its policy
update rule.

Given a policy π the value function can thus be further specified as:

vπ(s) := Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γk ·Rt+k+1|St = s

]
, for all s ∈ S, (14)

meaning the expected discounted reward given the agent follows policy π for all states s ∈ S.
This function vπ is called the state-value function for policy π. As aforementioned another way
to define a value function is as two parameter function that evaluates state-action pairs. Such
a function is called action-value function for policy π, usually denoted as qπ(s, a):

qπ(s, a) := Eπ[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γk ·Rt+k+1|St = s, At = a

]
. (15)

12 Tobias Hürten

By keeping an average of the actual returns, the estimated value of v(s) will converge to
the actual value q∗(s) if the number of times the state is encountered approaches infinity.
Likewise, by keeping separate averages for each action, these will subsequently converge to
the actual action-values. These methods of averaging over a large number of encounters are
called Monte Carlo methods [4].

Another important feature of value functions is the fact that the value of state s only
depends on the estimated values of the following states recursively, in a similar fashion as
shown for the expected return in Section 4.1.3. This characteristic can hence be expressed by
the so called Bellman equation:

vπ(s) := Eπ[Gt|St = s]

= Eπ[Rt+1 + γ ·Gt+1|St = s] by Equation 12

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) [r + γ · Eπ[Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γ · vπ(s′)] , for all s ∈ S (16)

with a ∈ A(s), s, s′ ∈ S and r ∈ R.

Using this Bellman equation, the value of each state can be updated using the estimated
values of the following states which can then each be updated with respect to their follow-
ing states. This means that similar to the return (see Equation 12), value functions satisfy
recursive relationships [4].

This process of value updates is called iterative policy evaluation since all value estimates
are iteratively brought closer to the actual values. As aforementioned, this in theory con-
verges to the true values only in the limit, that is for infinite repetition, however in practice
it is satisfactory to run the iterative policy evaluation finitely until the updates become suffi-
ciently small.

This value function however still only evaluates states with respect to the current policy
π. To improve this action selection strategy the outcome of new actions has to be explored.
Given a policy π and the corresponding state-value function vπ(s), a new arbitrary action a
can be evaluated by assuming this action is selected for state s after which the current policy
π will be followed again:

qπ(s, a) := E[Rt+1 + γ · vπ(St+1) |St = s, At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γ · vπ(s′)]. (17)

This action-value of a given state s therefore depends on the immediate reward of selecting
that action plus the discounted state-value of the subsequent state s′ with respect to the
current policy π. Therefore, if the action-value qπ(s, a) is better than the state-value vπ (which
averages the value over all possible actions), the probability of selecting action a in state s
should be increased for the policy update. Note that "probability" implies a stochastic policy
however this analogously applies for deterministic policies as well. [4]

Tobias Hürten 13

The next logical step is to not only consider a single action for a single state but all actions
and all states respectively. The resulting new greedy policy π′ is hence given by:

π′(a|s) := argmax
a

qπ(s, a)

= argmax
a

E[Rt+1 + γ · vπ(St+1)|St = s, At = a]

= argmax
a

∑
s′,r

p(s′, r|s, a)[r + γ · vπ(s′)], (18)

meaning the policy greedily selects actions according to vπ(s) with one step of look-ahead.

This new policy π′ will be better than the previous one except for the case that π was
already optimal. After updating policy π the state-value function can be computed again
which in return can be used to update the policy once more. This process of gradually
improving the policy while always updating the value estimates is called policy iteration and
can be illustrated as a sequence as follows:

π0
E→ vπ0

I→ π1
E→ vπ1

I→ π2
E→ ...

I→ π∗
E→ v∗ (19)

As Sutton et al. state: since finite MDPs only have a finite number of policies and the policy
is guaranteed to be a strict improvement, this policy iteration process must converge to the
optimal policy in a finite number of iteration steps [4]. As already stated, policy evaluation
itself only converges in the limit however it can be truncated. One essential way is to stop
policy evaluation after a single step. This is called value iteration and essentially turns the
Bellman equation into an update rule:

vk+1(s) := max
a
E[Rt+1 + γ · vk(St+1)|St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γ · vk(s′)], (20)

for all s ∈ S. Value iteration hence combines one step of policy evaluation and one step of
policy improvement. To summarize policy iteration is a process to improve a given policy
by iteratively aligning the value function to the current policy and then making the policy
greedy with respect to the value function as shown by Figure 4. [4]

4.1.5 Monte Carlo methods

Monte Carlo methods were already referred to in Section 4.1.4 when talking about averag-
ing over large samples. The first key feature of Monte Carlo methods is the fact that they
do not rely on information about the environment but only on experience that consists of
sequences of states, actions and rewards. These experiences can be gathered either through
actual interactions with the environment or by simulating them - in the case of model-based
methods.

For simplicity, Sutton et al. [4] limit themselves on episodic problems, that is problems
whose experience is divided into episodes that will undeniably terminate at some final time

14 Tobias Hürten

Figure 4. Illustration of the iterative cycle that is typical for value iteration. [4]
First the policy is evaluated by computing the value function. Then the policy itself is

updated to greedily select the best action with respect to the new value function. This way
the algorithm iteratively alternates between policy evaluation and policy improvement.

step T . Policy evaluation and policy improvement take place only after an episode has fin-
ished, meaning value estimates and policies are only changed after reaching a terminal state.
Monte Carlo methods therefore average over the complete return for each episode iteratively
(in the next Section a method will be discussed that learns from partial returns). Conse-
quentially Monte Carlo methods estimate the state-value function vπ using samples that are
collected by following policy π a number of episodes, to then average the expected return,
that is the expected cumulative sum of future discounted rewards. As the authors of [4] state:
As the number of times that a state s is visited increases, this estimate should converge to the
expected value by the law of large numbers.

Since the values are estimated using experience of actual episode samples, the estimate of
each state-value only depends on that state, as opposed to other states as seen before. This
has implications for the computational expense of Monte Carlo methods.

It proves particularly useful to estimate the action-values instead of state-values since these
already contain all critic information to follow a greedy policy, simply by selecting the action
that - according to the action-value function - yields the best reward and next state pair. The
reader should remember that the policy evaluation problem for action-values was defined by
choosing a new action a in state s and thereafter following policy π again. The action-value
function qπ(s, a) can be estimated analogously to the state-values by averaging over each visit
of a state-action pair (as opposed to just states), meaning each time a specific action was
chosen in the specific state s. Again as the number of times the pair is visited approaches
infinity the values converge to q∗.

A simple way of updating the value estimate V of vπ could look like this:

V (St)← V (St) + α · [Gt − V (St)], (21)

Tobias Hürten 15

where Gt is the actual return following time step t and α the constant step size parameter as
introduced in Section 4.1.1. [4]

This only leaves the problem that, by following the policy π, some state-action pairs may
actually never be visited, which becomes exceedingly problematic since policy evaluation for
action-values works by comparing qπ(s, a) with vπ(s), the average over all possible actions a
in state s. This should remind the reader of the exploration-exploitation dilemma introduced
in Section 4.1.1.

Possible solutions are either ensuring that each state-action pair has a nonzero probability
of being selected at the start of an episode or to only consider those policies that are both
stochastic and have nonzero probabilities for every action in every state.

Finally, Monte Carlo methods can be used to improve the policy in a similar manner as
discussed in Section 4.1.4: the algorithm samples an episode to collect experience which is
then used to perform the policy evaluation and update the value function after which the
policy can be adjusted based on the values of the visited states or state-action pairs. The idea
of value iteration (also Section 4.1.4) is one way to eliminate the problem that these value
estimates only converge for the limit by truncating policy evaluation to - in the case of value
iteration - only one step (of policy evaluation) between each step of policy improvement. [4]

4.1.6 Temporal Difference Learning

Temporal Difference (TD) learning is another significant notion in RL and has meaningful
implications for a lot of state-of-the-art algorithms that are being deployed today. In contrast
to Monte Carlo methods, which have to wait for an episode to terminate to gather the actual
return Gt (see Equation 21), TD methods only need to await the next time step t+1. Then TD
methods can compute a target using the received immediate reward Rt+1 and the discounted
value estimate V (St+1) for the following state St+1:

V (St)← V (St) + α · [Rt+1 + γ · V (St+1)− V (St)]. (22)

To be more exact this example is called TD(0) - a special case of TD(λ). Note that Monte
Carlo methods also have an (implicit) target: the actual return Gt. The computed difference
between the TD target and the current value estimates is called the TD error:

δt := Rt+1 + γ · V (St+1)− V (St). (23)

The first essential advantage of TD learning over Monte Carlo methods is the fact that
learning (as in updating the values and policy) does not need to be delayed until after an
episode terminates. This saves a considerable amount of time, especially in applications that
potentially have very long episodes, as often is the case. Similarly these methods are very
advantageous in scenarios with continuous tasks that have no terminating state whatsoever.

16 Tobias Hürten

4.1.7 Policy Gradient methods

Until this point all methods aimed to estimate the actual values of each action, i.e. the action-
value function. This however is exceedingly expensive for higher action space dimensions.
Hence so called gradient policy methods try to learn a parameterized policy instead. This
parameterized policy πθ can be expressed as:

π(a | s, θ) = Pr{At = a |St = s, θt = θ}. (24)

Then, these parameters θ can then be improved during a policy update that aims to max-
imize some objective function J(θ). This can be achieved by estimating the gradient with
respect to the policy parameters θ:

θt+1 = θt + α ·◊�∇θJ(θt), (25)

with the policy’s parameters θ, learning rate α and the estimated gradient of the objective
function ◊�∇θJ(θt). This process of gradually improving the policy’s parameters in the direction
of the greatest increase of the objective function (its gradient direction) is usually referred to
as Stochastic Gradient Ascent (SGA).

Naturally, this method requires the policy πθ to be differentiable with respect to its param-
eters. Furthermore, it is generally preferred for policies to never become deterministic, as to
ensure exploration. A common way to receive a parameterized policy based on action-values
is to use an exponential soft-max distribution:

π(a | s, θ) = eh(s,a,θ)∑
b∈A eh(s,b,θ)

, (26)

where h(s, a, θ) defines a numerical action preference for each state-action pair and could be
potentially acquired using a neural network.

One significant advantage of these policy gradient methods is the fact, that the policy
defines an actual action probability distribution, meaning actions are not assigned values but
a probability by which it should be performed. For probabilities smaller than 1, this means
that there will still be a chance of exploration, however if the optimal policy happened to
be deterministic, meaning there is one single best action for each state, a policy gradient
method will converge to a probability distribution in which the likelihood of optimal actions
are infinitely higher than for suboptimal ones. [4]

Tobias Hürten 17

4.1.8 Actor-Critic methods

The previously discussed RL methods generally fall into two categories: actor-only methods
and critic-only methods. Critic-only methods generally rely on value approximation and try to
acquire optimal policies by approximating solutions to the Bellman equation (16), whereas
actor-only methods use a parameterized policy which is then updated based on the gradient
with respect to θ as introduced in Section 4.1.7. Actor-critic methods try to combine both
approaches in an off-policy manner: the critic policy approximates the value function and is
then used to update the actor policy’s parameters. [6]

This thesis will use two actor-critic algorithms: Proximal Policy Optimization (PPO) and
Advantage Actor Critic (A2C).

A2C implements actor-critic behavior in its purest form: the critic policy is updated by
approximating a solution to the Bellman equation (16) and computes an advantage function,
that assigns each performed action a numerical value which is then used to update the actor
policy’s parameters θ in the gradient direction. [7]

PPO on the other hand was presented by Schulman et al. in 2017 and aims to extend so
called trust-region methods, which impose a constraint on the size of policy updates which
reduces the chance of straying too far from the previous policy during a single update which
could potentially corrupt the policy. PPO updates the actor policy using a surrogate objective
function which clips the product of the advantage function (critic) and the ratio between the
new updated policy and the old policy. This way, maximizing the objective function means
increasing the probability of actions that have a positive advantage, while the likelihood of
those actions with a negative advantage are decreased. Furthermore each update is clipped
in size and hence limited to a "trusted" region. [8]

4.2 Adversarial Attacks

After introducing the basic working environment, it is time to introduce the main topic of
this thesis: adversarial attacks. The vulnerability to so called adversarial examples was firstly
discovered by Szegedy et al.[9] for computer vision classification in 2014. These models’
accuracy was decreased significantly by applying noise to the original images, that was not
perceivable for human beings whatsoever (see Figure 5).

4.2.1 Fast Gradient Sign Method

Goodfellow et al. (2014) [5] continued researching this phenomenon and state that these
adversarial examples were miss-classified by the computer vision models, even though they
were only slightly altered versions of the original images. They suggest that linear behavior
in high-dimensional spaces is sufficient to cause the phenomenon of adversarial examples
and thus render such image classifiers vulnerable to these samples [5].

Furthermore the authors of [5] established a method to craft these samples efficiently, to
then present them to a model during its training state as to make it more robust to such
scenarios.

18 Tobias Hürten

Figure 5. Noise generation using FGSM by [5]. Noise equals the signed gradient of the cost
function and is not perceivable to the human eye (ϵ = 0.007). Perturbing the original input
results in a miss classification of the image as "gibbon" with an even higher confidence than

for the unaltered image.

Firstly an adversarial sample - denoted as x̃ - can be crafted by adding some noise η to the
original input x:

x̃ := x+ η. (27)

Furthermore an image classifier is expected to respond to an adversarial sample no differ-
ent than to the original input, if the noise satisfies the L∞ constraint ||η||∞ < ϵ, where ϵ is a
constant, that is small enough to be discarded by the sensor or data storage apparatus in use
[5].

A typical method for linear image classification is computing the weighted sum, which in
the case of adversarial samples, given a weight vector w, is defined as follows:

wT x̃ = wTx+ wTη. (28)

This suggests that adversarial perturbation causes the activation to grow by wTη [5].
Therefore it was motivated that η = sign(w) maximizes η with respect to the aforementioned
constraint. Thereafter Goodfellow et al. (2014) [5] expand this concept, as they suggest that
additionally this methodology should also affect neural networks. Given the parameters θ of
a neural network model, the input vector x and the correct labels y they introduced an effi-
cient method to craft adversarial samples which they named the Fast Gradient Sign Method
(FGSM), that takes an ϵ-scaled version of the name-giving signed gradient of the network’s
loss function J(θ, x, y) with respect to the input and computes η as follows:

η = ϵ · sign(∆xJ(θ, x, y)) (29)

[5]

Figure 5 demonstrates how FGSM is applied to an image, changing the network’s output
from the correct label to the wrong label with a very high corresponding confidence.

Tobias Hürten 19

4.2.2 Adversarial Attacks on Neural Network Policies

This concept - while originally developed for supervised image classifiers - was proven appli-
cable for unsupervised learning methods, as well as RL models. Huang et al. (2017) [10]
examine the effect of adversarial samples on neural network policies that were trained using
deep RL (which applies neural network techniques to RL concepts).

However while supervised image classifiers take images as input x and assign them labels
y, an RL model’s stochastic policy π takes a state s as input x and outputs a weighting y over
all possible actions. To craft an adversarial sample, it is generally assumed that the model
solves the underlying problem sufficiently well, meaning the most probable action in π can
be considered the best action:

a∗ = argmax
a

π(s), (30)

given state s.

FGSM’s objective function can then be expressed as the cross-entropy loss between the
policy’s probability distribution and the distribution that assigns a∗ a probability of 1 and all
other actions a probability of 0 since this would be the best probability distribution assuming
a∗ is indeed the best action. This way FGSM can be applied to RL models without having
access to the correct outputs ŷ, as would be the case for image classifiers.

4.3 Mobile Ad hoc Networks

Lastly after introducing all relevant concepts, it is necessary to address the application case
of the RL models that will be attacked in Sections 6 and 7.

The massively increasing number of mobile devices in use by people around the world ev-
ery day heightens the complexity of setting up conventional network structures exponentially.
Traditionally so called infrastructure-based networks provide an efficient and stable manner
in which these devices can connect and communicate with each other. Here, each device
connects to the closest stationary connection point which then relays the sent information to
another base station that distributes it further to the target devices. However the time and
monetary cost to set this infrastructure up, combined with an increasing amount of scenarios
in which the user requires a specific infrastructure that for whatever reason is not available
and also not installable - be it because of geographical reasons or otherwise - caused the need
to further explore alternative methods to provide connectivity.

MANETs allow mobile devices to connect with each other ad hoc, that is as the case arises.
In a MANET each device can connect to all the other mobile devices within connection range
to form an ad hoc network. Within this network each of the connected devices functions
as nodes that can relay packets to other nodes, forming an interconnected net of nodes as
depicted in Figure 6. [11]

Since each of these devices remains mobile, this means that the topology of the network
can change rapidly and unpredictably when devices change their location or disconnect from

20 Tobias Hürten

Figure 6. Structure of a conventional cellular network (a) compared to a MANET (b). [12]
In (a) each device communicates with the closest station which relays the package to the
target device via its closest station. In (b) however each device functions as a node in the

network and can relay packages itself.

the network. To accommodate for this, all the nodes within the MANET have to self organize
themselves depending on the location and number of connected devices. While a MANET
does not have to be connected to the internet to operate, by doing so each node in the
network can relay the internet connection to other nodes.

Overall the characteristics of MANETs allow them to be used in scenarios where fixed
infrastructure is not available or not trusted. This includes application cases for tactical
networks, that is networks used for military communication, which heightens the importance
of stable, secure and trusted connections. [12]

Recent research tries to incorporate RL method in MANETs to select the sequence of nodes
to transfer information from a source node to a target node within the network. [13] Nat-
urally these routing algorithms inherit all advantages and disadvantages of RL methods, in-
cluding their vulnerability to adversarial samples, as discussed in Section 4.2. Therefore this
thesis aims to investigate the susceptibility of RL routing algorithms for MANETs to a se-
ries of adversarial attacks - including different attack methods, strategies and configurations,
focusing on the special, highly security critic case of tactical networks.

5 Problem

5.1 The Environment

The selected environment was adopted from Hürten et al. (2022) [2] who previously utilized
it to assess adversarial attacks on tactical networks. The environment is designed to emulate
a MANET and incentivizes an RL agent to discover the most resilient path by maximizing its
reward.

Tobias Hürten 21

The network is represented by an edge-weighted graph G := (V,E), where the set of
tactical nodes V is connected by network links E. Each edge e in the graph is character-
ized by a three dimensional weight w : E → R3. These weights combine three network
metrics measured in experiments with real military radios in a laboratory setup [13]. More
precise, the weights include the queue length qe ∈ 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, packet loss rate
le ∈ 0.0, 0.05, 0.15, ..., 1.0, and varying data rate changes de ∈ [0.0, 9.6].

Next, a path through the network can be described as a set of edges ϕ ⊆ E, where each
edge e = (vi, vj) ∈ ϕ |w(e) = [qe, le, de] contains a sender node vi ∈ V , a receiver node
vj ∈ V and has an associated queue length qe, packet loss rate le and radio link data rate de.
Therefore each path ϕ ∈ Φ between a source node S and a target node T has an associated
weight as well, which is defined by the weights of each edge e ∈ ϕ: w(ϕ) = [Q,L,

∑
e∈ϕ σ

2[de]].
Therefore the optimal network path ϕ∗ can be obtained by solving the following control
problem with respect to the weight function w:

minw1

∑
e∈ϕ

w2 · (1−
∏
e∈ϕ

1− le) + w3 · σ2[de]

subject to:

∀e ∈ ϕ : qe ≤ 1.0, 1−
∏
e∈ϕ

1− le ≤ 1.0, 0.0 ≤ de ≤ 9.6 (31)

The RL aims to solve the control problem described in Eq. 31 by selecting nodes v ∈ V to
create a path ϕ from a specified source node S to a target node T , with the goal of minimizing
the path weight w(ϕ). It is important to note that a valid path always exists since the graph
is created using a Barabási–Albert (BA) model, which guarantees that it is a connected graph.

The observation space (or state space) S can hence be defined by a set of next neighbors
Vn ⊆ V and the corresponding edge weights w(eij), where eij is the edge from the current
node vi ∈ V to a next neighbor node vj ∈ Vn.

The action space A ⊆ E contains all edges e that connect current node vi to one of its
direct neighbors. All other actions are defined to be an illegal action, that is selecting an edge
to a node which is no direct neighbor of the current node, and are discouraged by a negative
reward.

After each action a ∈ A the agent is presented with a new state s ∈ S that contains the
updated next neighbors and the corresponding edge weights. Additionally it is provided with
a reward that encourages the agent to select a robust path with respect to the control problem
defined in 31:

r(e) :=


100 reached target node
1
w1
· qe + 1

w2
· (1− (1− levi) · (1− le)) +

1
w3
· E[de] s.t. Equation 31

−5 selecting an illegal action
(32)

This means the agent is rewarded with +100 for reaching the destination node, −5 for
selecting an illegal action or dependent on the selected link if a legal non target node.

22 Tobias Hürten

Figure 7. Exemplary graph depicting the abstraction of a MANET defined by the
environment in section 5.1. [2]

The applied model finds a robust path from the source node S to target node T using
intermediary nodes v4 and v0.

5.2 Restrictions

To maintain the integrity of the environment defined in Section 5.1, it is necessary to avoid
perturbing certain parameters. Specifically, in the case of the present environment (Sec-
tion 5.1), it is important not to perturb the current node vi ∈ V or the target node T . There
are several reasons for this. Firstly, in a real-world scenario, an adversary would likely only
have the ability to perturb the edge weights, i.e., the network metrics. Secondly, changing
the target node T would significantly impact the experiments described in Section 7. This
is because the victim model is designed to not only choose specific edges but also to solve a
completely different optimization problem.

6 Methodology

This section introduces the selected set of attacks, each being fundamentally based on the
concepts discussed in Section 4.

6.1 Noise constraints

Similar to RL algorithms which face the dilemma of exploration versus exploitation, attacks
utilizing adversarial samples are forced to make some kind of trade-off between general per-
formance and detectability. The problem of crafting potent adversarial samples, as described
in Section 4.2, becomes increasingly more difficult, the less perturbation is allowed, however
this also makes the attack increasingly more difficult to detect.

Huang et al. (2017) [10] provide a selection of noise constraints, that help to monitor said
trade-off using the constraining parameter ϵ:

Tobias Hürten 23

Figure 8. Different noise constraints according to [10]. Small perturbation (ϵ = 0.001) on
every feature of the input space (top) versus maximal perturbation (ϵ = 0.441) on a single

feature (in this case pixel of the input image) (bottom).

η =



ϵ · sign(∆xJ(θ, x, y)) for constraint ||η||∞ ≤ ϵ

ϵ ·
√
d · ∆xJ(θ,x,y)

||∆xJ(θ,x,y)||2 for constraint ||η||2 ≤ ||ϵ · 1d||2

maximally perturb highest-impact
dimensions with budget ϵ · d for constraint ||η||1 ≤ ||ϵ · 1d||1

, (33)

with perturbation η, that is the final noise added to the observation to craft an adversarial
sample.

Originally FGSM constraints the L∞-norm, meaning all input features are perturbed by no
more than a small amount of noise. Additionally, according to the authors of [10] it might
also be desirable to constrain the L2-norm with respect to the input dimension. Here, each
input feature is perturbed by adding a small amount of noise, that scales with the input
dimension, in the normalized direction of the gradient. Lastly it may be better to maximally
perturb only one input feature, i.e. constraining the L1-norm. Figure 8 depicts the L∞ and
L1 noise constraint for the game of Pong. In this example maximally perturbing one feature
of the input space corresponds to maximally perturbing a single pixel of the input image by
creating a second ball that gives the agent incentive to move the paddle down.

24 Tobias Hürten

To compare the performance and detectability of an attack depending on how the pertur-
bation η is constrained, this thesis will adapt the L∞ and L2 norm constraints as defined in
Equation 33.

6.2 Attack Methods

For the following experiments (Section 7) it is important to differentiate between two key
aspects: attack methods and attack strategies. While the latter answers the question when to
attack, attack methods define the process of adversarial sample crafting and hence how to
perform an attack.

This includes noise generation, noise application, as well as deciding on a final sample (in
the case of iterative attacks). Each of the following methods has access to an RL agent as
reference model, which is used to craft effective adversarial samples, however attacks can
also be transferred to unfamiliar victim models. It is also absolutely feasible to assume that
each attack can train its own reference model as long as it has access to the environment.
This essentially eliminates any need to know the inner workings of a potential victim model,
as long as it can be assumed to solve the same underlying problem as the attack’s reference
model. Section 7.2.3 will demonstrate this transferability of attacks.

6.2.1 One-step methods

The most naive approach to attack is to simply sample noise once, hold it to the noise con-
straint and add it to the original observation. This idea will be referred to as one-step naive
approach.

To generate the required noise, Pattanaik et al. (2017) [14] introduced a beta distribution
X ∼ B(α, β), where the probability of pulling 0 ≤ x ≤ 1 is given by:

p(X = x) = f(x, α, β)

=
xα−1(1− x)β−1

B(α, β)
, (34)

with beta function B(α, β) :=
∫ 1

0
Xα−1(1−X)β−1dX and its parameters α, β > 0, the first and

second concentration (which themselves can be parameters of the sample crafting method).
For the experiments in Section 7, they are set to α, β = 0.5, leading to non-uniform noise in
[0, 1]. [15]

To allow the observation parameters to be changed in either direction this noise is then
transformed to be in [−1, 1] and held to the aforementioned noise constraints, resulting in
the final perturbation η:

η = (2 ·B(α, β)− 1) · x
subject to Equation 33 (35)

Tobias Hürten 25

Algorithm 1 One-step naive approach attack

Require: state s ∈ S, reference model πθ, noise constraint ϵ, parameters of beta distribution
α, β

1: a∗ ← argmax πθ(s)
2: aw ← argmin πθ(s)
3: η ∼ 2 ·B(α, β)− 1
4: sadv ← s+ s · ϵ · η ▷ e.g. L∞-norm constrain (6.1)
5: return sadv

Sampling and adding noise at complete random like this involves the risk of changing the
observation in a way, that the best action a∗ might become even more probable to be selected
than before. While this is unlikely to happen, considering we already assume that the victim
model solves the underlying problem sufficiently well, it is undesirable when attacking an RL
model nonetheless.

Goodfellow et al. (2014) [5] present the first approach to effectively craft adversarial
samples as a direct follow up to the discovery of adversarial vulnerabilities by Szegedy et
al. [9] in the same year. As already introduced in Section 4.2.1 and adapted for RL victim
models in Section 4.2.2, this method uses the signed gradient of the objective function to
generate a noise vector that perturbs the observation such that the best action a∗ becomes
less probable. FGSM’s objective function is hence defined as the cross-entropy loss between
the policy’s action probability distribution and the distribution that places all weights on a∗:

J(s, π) := −
n∑

i=1

pi · log(π(ai|s)), (36)

where pi = 1 if ai = a∗ and 0 otherwise. [10]

The method can be further adjusted to also satisfy the L2-norm constrained noise condition
defined in Equation 33.

Algorithm 2 One-step FGSM attack

Require: state s ∈ S, reference model πθ, noise constraint ϵ, parameters of beta distribution
α, β

1: a∗ ← argmax πθ(s)
2: aw ← argmin πθ(s)
3: grad← ∇sJ(s, πθ)
4: grad_dir ← ϵ · sign(grad) ▷ e.g. L∞-norm constrain (6.1)
5: η ∼ 2 ·B(α, β)− 1
6: sadv ← s+ s · |η| · grad_dir
7: return sadv

Furthermore Pattanaik et al. (2017) [14] present an alternative to FGSM’s objective func-
tion, that not only aims to reduce to probability of selecting the best action a∗ but also increase

26 Tobias Hürten

the likelihood of choosing the worst action aw. Note that both a∗ and aw are defined in the
context of greedy action selection and dependent on the reference model’s policy π:

a∗ := argmaxπ(s)

aw := argminπ(s), (37)

again assuming that the policy solves the given RL problem sufficiently well.

This new objective function is defined as the cross-entropy loss between the policy’s action
probability distribution and an adversarial probability distribution that places all weights on
aw:

J(s, π) := −
n∑

i=1

pi · log(π(ai|s)), (38)

where pi = 1 if ai = aw and 0 otherwise. Therefore this term equals the negative logarithmic
probability of selecting the worst action aw by following policy π in state s (as can be seen
in Equation 39). It can be shown that by minimizing this objective function in fact the
probability of selecting aw is maximized.

J(s, π) = −
n∑

i=1

pi · log(πi)

= −log(π(aw|s))
⇒ min

s
J(s, π) = min

s
− log(π(aw|s))

⇔ min
s

J(s, π) = max
s

π(aw|s), (39)

since the logarithmic function is monotonically increasing.

As aforementioned, this new objective function has the benefit of actually maximizing the
probability of choosing the worst possible action aw instead of only minimizing the proba-
bility of selecting the best action a∗ with respect to the current policy π given state s (as it
is achieved by FGSM). The authors of [14] coined the attack method that utilizes this new
objective function gradient-based attack, however since FGSM also uses the gradient, for bet-
ter differentiation this thesis will refer to it as adversarial gradient attack to emphasize the
fact, that this new objective function is the cross-entropy loss between the policy’s probability
distribution and an adversarial probability distribution.

Tobias Hürten 27

Algorithm 3 One-step adversarial gradient attack

Require: state s ∈ S, reference model πθ, noise constraint ϵ, parameters of beta distribution
α, β

1: a∗ ← argmax πθ(s)
2: aw ← argmin πθ(s)
3: grad← ∇sJ(s, πθ)
4: grad_dir ← ϵ ·

√
d · grad

||grad||2 ▷ e.g. L2-norm constrain (6.1)
5: η ∼ 2 ·B(α, β)− 1
6: sadv ← s+ s · |η| · grad_dir
7: return sadv

6.2.2 Iterative methods

Up until this point, each of the introduced attack methods crafts the adversarial sample sadv
that corresponds to state st by sampling noise only once per time step. However, since the
noise is randomly sampled from the beta distribution, the probability of crafting a potent
adversarial sample with only one attempt is rather slim.

Thus, the performance of the aforementioned attack methods increases significantly when
sampling noise multiple times per time step and selecting the best resulting sample, that is the
one which reduced the victim model’s reward the most. Therefore so called iterative attacks
sample noise and craft the corresponding potential adversarial samples sadvi a number of n
times for each time step t. Then, out of this set of potential candidates, the one is selected,
that proofed most potent with respect to some criterion. This thesis uses three such criteria:
the probability of the potential adversarial action in the original probability distribution, the
new probability of the best action a∗ and the new probability of the worst action aw. Note
that new probability refers to the probability of the corresponding action in the probability
distribution that is provided by the policy, given the potential adversarial sample: π(sadvi).

Firstly, Pattanaik et al. (2017) [14] select adversarial samples based on the Q-values of
the corresponding adversarial actions, that is the action that would be chosen based on the
reference model’s policy given the adversarial sample as observation. Since the authors are
working with Q-Learning based algorithms, while this thesis focuses on Actor-Critic algo-
rithms, this criterion would translate as the probability of selecting the adversarial action in
the original probability distribution of the unperturbed observation. This means the least
probable the action was in the original distribution, the less desirable to perform that action
according to the reference model’s policy.

Next, the adversarial sample can also be chosen based on the new probabilities of a∗ and
aw, meaning the sample that minimizes the probability of choosing the best action (as is
achieved by FGSM’s objective function) or the one that maximizes the probability of selecting
the worst action (as is achieved by the objective function motivated in [14]).

6.2.3 Stochastic Gradient Descent methods

Instead of crafting n complete unrelated adversarial samples for each time step, it appears
more rational to start of with a random sample and improve it iteratively. According to [14],

28 Tobias Hürten

Algorithm 4 Iterative naive attack

Require: state s ∈ S, reference model πθ, number of iterations n, noise constraint ϵ, param-
eters of beta distribution α, β

1: a∗ ← argmax πθ(s)
2: aw ← argmin πθ(s)
3: sadv ← s
4: for i = 1 to n do
5: ηi ∼ 2 ·B(α, β)− 1
6: sadvi ← s+ s · ϵ · ηi ▷ e.g. L∞-norm constrain (6.1)
7: if criterion(sadvi) > criterion(sadv) then ▷ according to section 6.2.2
8: sadv ← sadvi
9: end if

10: end for
11: return sadv

this idea can be achieved using Stochastic Gradient Descent (SGD), which is a method to
iteratively optimize an objective function and is often used for ML tasks in general. Since SGD
requires an objective function to optimize in the first place, this method is only applicable to
gradient-based methods, i.e. FGSM and adversarial gradient attacks.

SGD differs from the previously defined iterative gradient approaches only in the inputs
that are used to compute the gradient. While iterative gradient methods always compute the
gradient based on the original state s, SGD uses the last potential adversarial sample sadvi−1

.
This way the adversarial sample is iteratively improved in the gradient direction, which also
eliminates the need of criteria, since each sample is a strict improvement to the previous one.

Algorithm 5 SGD FGSM attack

Require: state s ∈ S, reference model πθ, number of iterations n, noise constraint ϵ, param-
eters of beta distribution α, β

1: sadv ← s
2: for i = 1 to n do
3: grad← ∇sadvJ(sadv, πθ)
4: grad_dir ← ϵ · sign(grad) ▷ e.g. L∞-norm constrain (6.1)
5: ηi ∼ 2 ·B(α, β)− 1
6: sadv ← s+ s · |η| · grad_dir
7: end for
8: return sadv

6.2.4 Momentum boosted adversarial attacks

Dong et al. (2017) [16] introduce a new concept of boosting adversarial attacks with momen-
tum. To ensure faster and more stable conversion to the optimal adversarial sample, these
momentum boosted adversarial attacks accumulate a velocity vector in the gradient direction.

Tobias Hürten 29

Figure 9. Illustration of momentum boosting.
Each new gradient is scaled with a fraction of the previous gradients. This way the

algorithm converges faster while also avoiding to be inhibited by outliers, as these will not
be powerful enough to immediately break the momentum in the "correct" direction.

In this case µ is set to 0.5.

This idea can be applied to any iterative gradient descent method - in the case of this thesis,
the two SGD variants of FGSM and the adversarial gradient method.

Formally, the gradient gi for each iteration i ≤ n can be defined as:

gi = µ · gi−1 +∆sadvi−1
J(sadvi−1

, π), (40)

where ∆sadvi−1
J(sadvi−1

, π) is the gradient of the objective function with respect to the last
potential sample sadvi−1

. Furthermore the momentum coefficient 0 ≤ µ ≤ 1 defines the
degree by which each past gradient is considered for the new gradients. Lastly, gi is used to
compute the gradient direction in which the new noise is applied. Figure 9 illustrates how
this velocity vector is used to build momentum in the gradient direction.

Algorithm 6 Momentum boosted adversarial gradient attack

Require: state s ∈ S, reference model πθ, number of iterations n, noise constraint ϵ, param-
eters of beta distribution α, β

1: sadv ← s
2: grad0 ← 0
3: for i = 1 to n do
4: gradi ← µ · gradi−1 +∇sadvJ(sadv, πθ)
5: grad_dir ← ϵ ·

√
d · gradi

||gradi||2 ▷ e.g. L2-norm constrain (6.1)
6: ηi ∼ 2 ·B(α, β)− 1
7: sadv ← s+ s · |η|
8: end for
9: return sadv

6.2.5 Adversarial policy attacks

Gleave et al. (2019) [17] train adversarial agents to play against victim agents in a two-
player Markov game. This adversary has the only goal to minimize its opponents reward,
which is reflected by the corresponding environments in use.

30 Tobias Hürten

0 100000 200000 300000 400000 500000
timestep t

100

50

0

50

100

m
ea

n
re

wa
rd

adversary baseline

(a) Mean reward.

0 100000 200000 300000 400000 500000
timestep t

0

10

20

30

40

50

60

70

st
d

re
wa

rd

adversary baseline

(b) Standard deviation reward.

Figure 10. Illustration of the reward of the adversary and its reference model throughout
the training phase.

Hürten et al. (2022) [2] build on this concept and utilize an adversarial policy as a result of
adversarial training in the context of MANETs, using a modified version of the environment
introduced in Section 5.1. This adversarial agent can learn the reference model’s decision
making and compute noise that results in an effective adversarial sample.

While the adversary works with the same observation space S as the reference model, its
action space A has the same dimension as S and consists of a tuple containing noise for each
parameter of the observation. Furthermore the adversary receives an inverted reward of its
reference agent:

radv := (−1) · r. (41)

Hence by maximizing this reward, an agent trained on the adversary environment pro-
duces noise that results in adversarial samples which cause the victim model to maximize the
control problem defined in Equation 31. Figure 10 visualizes the adversarial training expe-
rience by illustrating the adversarial reward radv versus the reference model’s reward during
training.

While this method requires a training period on the adversary environment, it avoids ex-
pensive computation during application, that is each observation s is simply handed to the
adversarial policy which in return provides η = πadv(s) to craft the adversarial sample sadv.
Therefore the experiments in Section 7 should prove adversarial policy methods to have much
faster runtime than iterative approaches.

Next, this concept of adversarial policies can be extended to include the cumulative per-
turbation into the reward function. This creates incentive to avoid large amount of noise if
possible and aims to decrease susceptibility to detection. Hence this bound adversarial policy
attack modifies the reward as follows:

Tobias Hürten 31

Algorithm 7 Adversarial policy attack

Require: state s ∈ S, adversarial policy πadv, noise constraint ϵ
1: η ← πadv(s)
2: sadv ← s+ s · ϵ · η ▷ e.g. L∞-norm constrain (6.1)
3: return sadv

radvbound
:= (−1) · r − ρ ·

∑
πadvbound

(s), (42)

where πadvbound
(s) provides the adversary’s action as a tuple containing noise for each param-

eter of the observation like before and 0 ≤ ρ ≤ 1 is a scaling coefficient that determines to
which degree the cumulative noise is considered for the adversarial reward radvbound

.

6.3 Attack Strategies

Given this series of methods to craft adversarial samples, the question of how to attack is well
answered, leaving only the question of when to attack. Assuming that attacks at different time
steps have varying effectiveness and that attacking more often leads to higher detectability,
it is only natural to consider strategies that reduce the overall number of attacks by limiting
them only to those time steps that yield the most destructive potential.

Lin et al. (2017) [18] provide an approach that limits attacks only to those time steps,
in which changing the victim agent’s action will with a high probability lead to a decreased
return. This strategically-timed attack uses a preference function c to determine ideal attack
timings:

c(st) = max
at

π(st | at)−min
at

π(st | at)

= π(st | a∗)− π(st | aw) (43)

This preference function will consequently be large if the agent highly prefers a certain
action a∗ for state st in time step t over the least desirable action aw and small if the agent is
rather indifferent regarding the possible actions.

It is now feasible to limit attacks to those time steps (and their corresponding states st)
for which the preference function c(st) reaches some threshold β. Generally a large β should
result in fewer attacked time steps while a lower β results in an increased number of attacks,
while β = 0 is referred to as uniform attack, where each time step is attacked uniformly.
Figure 11 demonstrates this strategy for the game of pong. The state is only perturbed in the
case of s84 since in that case the agent highly prefers a specific action to defend the ball.

With the correct configuration for the given problem, this will ensure that attacks are
performed when necessary while simultaneously reducing the overall amount of attacks to
decrease the risk of detection. [18]

32 Tobias Hürten

Figure 11. Strategically-timed attack illustrated using the game of pong [18].
At time step t = 25 the ball is in the middle of the playing field, both vertically and

horizontally, hence the agent has no strong preference for a certain action. However in time
step t = 84 the ball is close to the border of the playing field resulting in an immediate

threat to the agent. Consequently the action up is strongly preferred and perturbing the
state to manipulate the agent to choose down instead leads to a decrease of return. In this
case the preference function exceeds the threshold β = 0.35. Note that the authors of [18]

denote the noise as δ.

7 Results

This section discusses quantitative results from a set of experiments. Each attack is evaluated
and compared to each other based on a number of metrics, such as effectiveness, transferabil-
ity, runtime and detectability.

7.1 Configuration

All experiments are run on the same environment (an implementation of the model discussed
in Section 5.1). Non adversarial policy attacks sample noise using the beta distribution ac-
cording to Equation 34.

Furthermore the attacks are evaluated on implementations of three actor-critic models:
two PPO agents (one that is also used as reference model and one independent model) and
an A2C agent, each trained over one million time steps. Figure 12 graphs the algorithm’s
performance throughout the training process.

Also, all attacks typically implement the L∞-norm noise constraint, unless explicitly stated
otherwise. Additionally, by default iterative methods use the probability of selecting the new
adversarial action in the original probability distribution given by π as criterion to select the
most effective adversarial sample.

To receive statistically relevant results, each configuration is tested over a number of
episodes to evaluate the average outcome. Figure 13 shows the behavior of the standard
deviation of the episode rewards, the episode length and the number of attacks per episode
(i.e. the agent chooses a different action on the adversarial sample than on the original ob-
servation) as exemplary metrics to get an idea of how many episodes are required for the
mean computation. The data suggests that for the chosen environment, RL algorithms and

Tobias Hürten 33

0.0 0.2 0.4 0.6 0.8 1.0
timestep t 1e6

150

100

50

0

50

100

m
ea

n
re

wa
rd

ppo white-box ppo black-box a2c black-box

(a) Mean reward.

0.0 0.2 0.4 0.6 0.8 1.0
timestep t 1e6

5

10

15

20

25

30

35

m
ea

n
ep

iso
de

 le
ng

th

ppo white-box ppo black-box a2c black-box

(b) Mean episode length.

0.0 0.2 0.4 0.6 0.8 1.0
timestep t 1e6

0

20

40

60

80

100

st
d

re
wa

rd

ppo white-box ppo black-box a2c black-box

(c) Standard deviation reward.

0.0 0.2 0.4 0.6 0.8 1.0
timestep t 1e6

0

2

4

6

8

10

12
st

d
ep

iso
de

 le
ng

th

ppo white-box ppo black-box a2c black-box

(d) Standard deviation episode length.

Figure 12. Illustration of the three model’s mean reward and episode length throughout the
training phase (1 million time steps).

attacks a number of 50 episodes seems to be sufficient, as the deviation of the resulting data
does not decrease any further, even for larger episode averages.

As discussed in Section 6.2.2, iterative methods (as well as their SGD and momentum
boosted derivatives) sample noise a number of n times for each state st. To be able to compare
them to the adversarial policy attacks in a meaningful manner, it is necessary to Figure out the
minimum number of sample iterations required to achieve sufficient performance. Figure 14
shows the results of an extensive test with different iteration numbers. The resulting data
suggests that generally sampling noise over 15 iterations achieves maximum performance for
these specific environment-RL-model combinations - measured as the mean reward reduction
and number of changed actions.

34 Tobias Hürten

0 20 40 60 80 100 120 140
num episodes

0

20

40

60

80

100

120

140

st
d

re
wa

rd

adv policy
adv policy bound
one step naive
iterative naive

one step fgsm
iterative fgsm
sgd fgsm
mom fgsm

one step adv grad
iterative adv grad
sgd adv grad
mom adv grad

(a) Standard deviation of the reward.

0 20 40 60 80 100 120 140
num episodes

0

20

40

60

80

100

120

st
d

re
wa

rd

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(b) Standard deviation of the reward.

0 20 40 60 80 100 120 140
num episodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

st
d

ep
iso

de
 le

ng
th

adv policy
adv policy bound
one step naive
iterative naive

one step fgsm
iterative fgsm
sgd fgsm
mom fgsm

one step adv grad
iterative adv grad
sgd adv grad
mom adv grad

(c) Standard deviation of the episode length.

0 20 40 60 80 100 120 140
num episodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

st
d

ep
iso

de
 le

ng
th

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(d) Standard deviation of the episode length.

0 20 40 60 80 100 120 140
num episodes

0

2

4

6

8

10

12

14

16

st
d

nu
m

 a
ct

io
ns

 c
ha

ng
ed

adv policy
adv policy bound
one step naive
iterative naive

one step fgsm
iterative fgsm
sgd fgsm
mom fgsm

one step adv grad
iterative adv grad
sgd adv grad
mom adv grad

(e) Standard deviation of the number of
actions changed.

0 20 40 60 80 100 120 140
num episodes

0

2

4

6

8

10

12

14

16

st
d

nu
m

 a
ct

io
ns

 c
ha

ng
ed

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(f) Standard deviation of the number of
actions changed.

Figure 13. Development of the standard deviation with respect to the total number of
episodes (right-hand side compares best method of each type).

Tobias Hürten 35

0 10 20 30 40 50 60 70
num iterations n

0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

iterative naive
iterative fgsm
sgd fgsm

mom fgsm
iterative adv grad

sgd adv grad
mom adv grad

(a) Mean reward reduction.

0 10 20 30 40 50 60 70
num iterations n

0

5

10

15

20

25

30

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

iterative naive
iterative fgsm
sgd fgsm

mom fgsm
iterative adv grad

sgd adv grad
mom adv grad

(b) Mean number of actions changed.

0 10 20 30 40 50 60 70
num iterations n

20

40

60

80

100

st
d

re
wa

rd

iterative naive
iterative fgsm
sgd fgsm

mom fgsm
iterative adv grad

sgd adv grad
mom adv grad

(c) Std of reward reduction.

0 10 20 30 40 50 60 70
num iterations n

2

4

6

8

10

12

14
st

d
nu

m
 a

ct
io

ns
 c

ha
ng

ed

iterative naive
iterative fgsm
sgd fgsm

mom fgsm
iterative adv grad

sgd adv grad
mom adv grad

(d) Std of number of actions changed.

Figure 14. Mean reward reduction (a) and number of actions changed (b) for different
numbers of iterations of noise sampling per state st.

7.2 Evaluation

7.2.1 Effectiveness

To quantify the effectiveness of each attack, experiments were run on a set of ϵ ∈ [0, 1]
resulting in the 50 episode averages illustrated by Figure 15.

Figures 16a, 16c, 16b and 16d demonstrate the performance of the naive, FGSM and ad-
versarial gradient approach for each of the types (one-step, iterative, SGD and momentum
boosted) with respect to the mean reward reduction. Generally both gradient variants ap-
pear to be similarly powerful. While FGSM performs slightly better for smaller values for ϵ,
both approaches reach their maximum potential around the same ϵ configuration. Unsurpris-
ingly, the iterative naive attack method performs worse than its gradient-based competitors,
although the gap seems to be significantly smaller for iterative naive attacks than for the
one-step naive approach.

36 Tobias Hürten

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy
adv policy bound
one step naive
iterative naive

one step fgsm
iterative fgsm
sgd fgsm
mom fgsm

one step adv grad
iterative adv grad
sgd adv grad
mom adv grad

(a) Mean reward reduction (all attacks).

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(b) Mean reward reduction (comparison).

Figure 15. Illustration of the experiment stated in section 7.2.1. (a) takes all methods into
account while (b) compares the best method of each type similar to figure 14. Results are

estimated over 50 episodes with varying ϵ.

Figure 16e illustrates the mean reward reduction of the two adversarial policy methods.
The results suggest that both approaches perform similarly well and achieve maximal reward
reduction at around ϵ = 0.3.

To compare the different types of attacks, the most potent approach combinations are
graphed in Figure 16f. As expected one-step attacks generally perform worse with mean
reward reduction that linearly increases in ϵ and reaches its maximum of about 150% at
ϵ = 1.0. Iterative (gradient-based) attacks seem to perform marginally better than adversarial
policy attacks for ϵ < 0.3, at which point both attack types reach a maximum reward reduction
of 200%. While SGD reaches its maximum potential at ϵ = 0.2, momentum boosted attacks
benefit from their velocity vector and reach the reward reduction of 200% even faster, at
around ϵ = 0.1.

Generally the experiment suggests that other than one-step attacks every attack method
can potentially decrease the victim model’s performance dramatically by up to 200% on aver-
age, however some attack methods seem to require a more loose noise constraint than others.
Figure 17 demonstrates how the victim model is manipulated in selecting illegal actions when
planning the network path.

The next experiment tests the performances given different criteria for sample selecting
and is depicted in Figure 18. Surprisingly the corresponding data suggests, that the only
feasible criterion by which to select a potential adversarial sample for iterative attacks is the
probability of the adversarial action aadv in the original distribution. Using the probability of
the a∗ or aw as criterion seems to be a poor strategy to select the best adversarial sample, as
attacks are unable to reduce the victim model’s mean reward regardless of the ϵ configuration.

Momentum boosted attacks have an additional parameter µ, that determines the degree
by which the previous gradients influence the computation of the current gradient gt. An
experiment on different values for µ ∈ [0, 1] suggests that the specific configuration of µ
does increase the mean perturbation, however does not increase the mean reward reduction.

Tobias Hürten 37

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

one step naive one step fgsm one step adv grad

(a) Mean reward of one-step methods.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

iterative naive iterative fgsm iterative adv grad

(b) Mean reward of iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

sgd fgsm sgd adv grad

(c) Mean reward of SGD methods.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

mom fgsm mom adv grad

(d) Mean reward of momentum methods.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy adv policy bound

(e) Mean reward of adv policy methods.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(f) Mean reward (comparison).

Figure 16. Divides the results shown in figure 15 into categories for each type of attack
method. Results are estimated over 50 episodes with varying ϵ.

This is due to the fact that the aforementioned test was run on a fixed ϵ = 0.35. However
Figure 15b already suggests that the main difference between momentum boosted attacks

38 Tobias Hürten

(a) Legal path, planned by the baseline
without attacks.

(b) Illegal path, planned by the attacked
victim model.

Figure 17. Network path planned by baseline and attacked victim model. [2]
Attacks were performed uniformly using the iterative adversarial gradient method.

Action legality and frequency is represented by the color choice and intensity.

and SGD attacks is highlighted for smaller values for ϵ ∈ [0, 2].

Section 6.1 motivates two different noise constraints. Figure 20 depicts the performance of
each attack method type for both, the L∞- and L2-norm constraint. It is observable, that the
L2-norm constrained attacks seem to reach their maximum performance faster (for smaller ϵ
values), however on average also apply more noise per episode. For example the momentum
boosted adversarial gradient attack reaches the maximum reward reduction of around 200%
for ϵ = 0.05 while using the L2-norm constrained noise, whereas applying L∞-norm con-
strained noise requires a larger ϵ = 0.1. However the mean cumulative perturbation seems
to be smaller for ϵ < 0.25 when using the L∞-norm constraint and larger for ϵ > 0.25. Sur-
prisingly however, the adversarial policy attack seems to perform significantly better with the
L2-norm, even outperforming the previously best method - momentum boosted adversarial
gradient attack. Even so, this new noise constraint has the added mean perturbation reach its
maximum of around 300 for a comparatively small ϵ = 0.2, while it previously scaled linearly
in ϵ, only ever reaching about 200 on average. Hence the L2-norm constraint seems to be
the better option for adversarial policy attacks if the increased perturbation and therefore
detectability is tolerable. For the remaining attack method types the choice of either noise
constraint seems acceptable and the decision should be based on the minor trade-off between
performance and detectability.

Furthermore attack methods, that utilize the beta distribution to sample noise, can either
sample the same noise for all parameter of the observation space uniformly or sample noise
for each parameter individually. These two options are compared in Figure 21, which suggests
that the performance (i.e. mean reward reduction) experiences a slight increase for larger
ϵ-values, especially for one-step methods, when sampling noise non-uniformly. This implies
that sampling noise non-uniformly is preferred, when it is only possible to sample noise once
per time step, potentially due to limitations on runtime, as will be discussed in Section 7.2.4.

Tobias Hürten 39

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

iterative naive iterative fgsm iterative adv grad

(a) Select sadvi , that had the lowest
probability in the original distribution.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

iterative naive iterative fgsm iterative adv grad

(b) Select sadvi , that resulted in the lowest
new probability for a∗.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

iterative naive iterative fgsm iterative adv grad

(c) Select sadvi , that resulted in the highest
new probability for aw.

Figure 18. Comparison of mean reward reduction based on the criterion to choose
adversarial samples.

7.2.2 Detectability

Detectability describes the level of ease with which attacks are perceivable to either human
observation or more often artificial detectors. Assuming that in general attacks are easier
to detect, the more noise is applied to the observations, it is logical to compare the amount
of mean cumulative perturbation of the varying attack methods, meaning the total absolute
noise added on average in each time step.

It is to be expected, that the noise constrain parameter ϵ has the highest influence on the
cumulative perturbation and hence the attack’s detectability. For larger ϵ, the added noise
is less constrained, leading to larger perturbation and therefore an increased susceptibility
to detection, as depicted by Figure 22. Note that only the data for the best method out
of each category is shown, in a similar way to Figure 15b. While the mean cumulative
perturbation increases linearly in ϵ for one-step, iterative and adversarial policy attacks, SGD

40 Tobias Hürten

0.0 0.2 0.4 0.6 0.8 1.00%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

mom fgsm mom adv grad

(a) Mean reward reduction.

0.0 0.2 0.4 0.6 0.8 1.0

300

310

320

330

340

m
ea

n
cu

m
 p

er
tu

rb
at

io
n

mom fgsm mom adv grad

(b) Mean cumulative perturbation.

Figure 19. Performance of the two momentum boosted attacks with different µ ∈ [0, 1].

and momentum boosted attacks reach the maximum perturbation at around ϵ = 0.2 and
ϵ = 0.4 respectively, at which point the attack is very susceptible to detection.

Figure 23 divides the results into categories for the different attack method types for better
clarity. Noticeably, performance seems to not necessarily increase proportionally to the added
perturbation, as is the case for one-step methods. For example, adversarial policy attacks
reach their maximum mean reward reduction for ϵ = 0.3, while the corresponding mean
cumulative perturbation increases further to about three times that amount for ϵ = 1.

For most attacks, a good trade-off between performance and detectability seems to be
around ϵ = 0.25 to ϵ = 0.35.

In the previous experiments all attacks were performed as uniform attacks (β = 0), how-
ever by increasing β the victim model is only attacked if the reference model has a significant
preference for the best action a∗ over selecting the worst action aw as described in Section 6.3.
Consequently less attacks should be performed throughout the episode and only those time
steps, that are necessary to decrease the victim model’s reward. The data, that resulted from
an experiment run on different configurations for β ∈ [0, 1] utilizing the most potent attack
method of each type as before, is illustrated in Figure 24. For the chosen environment, as
defined in Section 5.1, the victim model is very confident in its choice of actions, hence the
preference function is very close to 1 (a∗ is preferred to aw almost by factor 1), which is
why for the most part, the attack’s performance is unaffected by β. However for a large
β > 0.9, both the mean reward reduction and the number of performed attacks decreases
slightly and finally hit 0 for β = 1, as is to be expected. Consequentially the data suggests,
that for the given RL problem β does not seem to be a powerful tool to effectively decrease
the detectability of attacks.

Another attempt at limiting noise is to integrate the added perturbation into the reward
function of an adversarial policy, as motivated in Section 6.2.5. Here, the reward is com-
puted as the inverted reward of the reference model minus the absolute added perturbation,
scaled by some factor ρ. Figure 25 illustrates the bound adversarial attack’s performance for

Tobias Hürten 41

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(a) Mean reward reduction L∞

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(b) Mean reward reduction L2.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

m
ea

n
cu

m
 p

er
tu

rb
at

io
n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(c) Mean cumulative perturbation L∞.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

m
ea

n
cu

m
 p

er
tu

rb
at

io
n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(d) Mean cumulative perturbation L2.

Figure 20. Each attack type’s performance with respect to the L∞-norm and L2-norm
constrained noise.

different ρ configurations compared to the unbound variant as baseline. The bound adver-
sarial policy was retrained for each value of ρ over 100 000 time steps. It is apparent that
this approach manages to reduce the mean amount of noise added during each time step, as
the adversarial agent learns to only apply noise if necessary. While the fact that the bound
adversarial policy already starts with less mean reward reduction and perturbation compared
to its unbound counterpart, even for ρ = 0 can generally be explained by the fewer number of
training time steps (the two adversarial policies used in the previous experiments were each
trained on 500 000 time steps), Figure 10 demonstrated that adversaries can reach a good
performance after a relatively short training phase. Hence the experiment nonetheless shows
the tendency of a decreasing mean cumulative perturbation for increasing values of ρ, while
still retaining a stable performance.

7.2.3 Transferability

The term transferability describes how well each attack can be extended to RL models, other
than its reference model. Note that all iterative attacks at least require a model to evalu-

42 Tobias Hürten

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(a) Mean reward uniform noise.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(b) Mean reward non-uniform noise.

Figure 21. Each attack type’s performance with respect to whether noise was sampled
uniformly for all parameter of the observation space or specific to each.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

m
ea

n
cu

m
 p

er
tu

rb
at

io
n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(a) Mean cumulative perturbation of all
attacks.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(b) Mean reward reduction of each attack
type.

Figure 22. Illustrates the experiment stated in section 7.2.2.

ate each potential adversarial sample sadvi. Gradient methods additionally need access to a
model’s policy to compute the gradients. Adversarial policy attacks on the other hand are
explicitly trained on a given RL model and learn how to choose their own actions based on
the latter’s policy.

Attacks targeting these agents are so called white-box attacks, meaning the attacker has
access to the inner workings of the victim model, whereas real life applications will usually
require the attack to be performed in a black-box manner. This means the attack has neither
access to the model nor information of the victim model’s policy, etc. In the case of adversarial
policy attacks, an argument can be made that these are actually somewhere between pure
white-box and pure black-box attacks, which in literature is often referred to as semi-black-
box attacks. This is due to the fact that these attack methods do require access to some model,
however not necessarily its inner workings such as its policy. It is sufficient to simply invoke

Tobias Hürten 43

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

one step naive reward
one step fgsm reward
one step adv grad reward

0

50

100

150

200

250

m
ea

n
cu

m
ul

at
iv

e
pe

rtu
rb

at
io

n

one step naive perturbation
one step fgsm perturbation
one step adv grad perturbation

(a) One-step methods.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

iterative naive reward
iterative fgsm reward
iterative adv grad reward

0

50

100

150

200

250

300

350

m
ea

n
cu

m
ul

at
iv

e
pe

rtu
rb

at
io

n

iterative naive perturbation
iterative fgsm perturbation
iterative adv grad perturbation

(b) Iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

sgd fgsm reward
sgd adv grad reward

0

50

100

150

200

250

300
m

ea
n

cu
m

ul
at

iv
e

pe
rtu

rb
at

io
n

sgd fgsm perturbation
sgd adv grad perturbation

(c) SGD methods.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

mom fgsm reward
mom adv grad reward

0

50

100

150

200

250

300

m
ea

n
cu

m
ul

at
iv

e
pe

rtu
rb

at
io

n

mom fgsm perturbation
mom adv grad perturbation

(d) Momentum boosted methods.

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy reward
adv policy bound reward

0

50

100

150

200

m
ea

n
cu

m
ul

at
iv

e
pe

rtu
rb

at
io

n

adv policy perturbation
adv policy bound perturbation

(e) Adversarial policy methods.

Figure 23. Divides the results shown in figure 22 into categories for each type of attack
method and compares mean reward reduction with mean cumulative perturbation.

the reference model’s policy implicitly by letting it select actions based on the adversarial
policy’s samples.

44 Tobias Hürten

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(a) Mean reward reduction.

0.0 0.2 0.4 0.6 0.8 1.0

100

150

200

250

300

m
ea

n
cu

m
 p

er
tu

rb
at

io
n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(b) Mean cumulative perturbation.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

m
ea

n
nu

m
 a

tta
ck

s

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(c) Mean number of attacks per episode.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(d) Mean number of actions changed.

Figure 24. Performance of each attack type for different β ∈ [0, 1].

0.0 0.2 0.4 0.6 0.8 1.0
103

104

105

106

107

108

109

110

111

m
ea

n
cu

m
 p

er
tu

rb
at

io
n

adv policy bound

(a) Mean perturbation.

0.0 0.2 0.4 0.6 0.8 1.00%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

adv policy bound

(b) Mean reward reduction.

Figure 25. Trade-off between mean reward reduction and cumulative perturbation for an
increasing ρ. ϵ is fixed to 0.35.

Tobias Hürten 45

However generally it is desirable to perform these attacks as black-box attacks, meaning
no information of the actual victim model can be assumed. Indeed this is not an issue because
for RL problems it is generally safe to assume that models, which solve the same underlying
problem work in a similar enough way so that an attack can achieve similar results on models
other than its reference model.

In the following, each attack method was applied as a uniform attack (β = 0) on its
reference model (a PPO agent), as well as two unknown models, i.e. another PPO agent and
an A2C agent, the latter two being real black-box attacks. All three models underwent one
million time steps of training (Figure 12).

Figure 26 models this experiment on the metrics mean reward (26a), mean number of
attacks per episode (26b), mean cumulative perturbation (26c) and mean episode length
(26d). While it is reasonable to assume an advantage for white-box attacks compared to
black-box attacks, as a matter of fact, this is not the case. All attacks only experience a
marginal performance hit, if at all (26a).

Figures 26b, 26c and 26d also suggest that all attacks perform about the same on each
of the three models, except for SGD adversarial gradient attack, which on average attacks
about 5 additional times on the white-box attack compared to the black-box attacks, leading
to a mean episode length, that is also about 5 time steps longer. This however does neither
seem to correlate with SGD attacks in general, nor is it recognizable with other adversarial
gradient attacks, hence the variation in performance is likely due to the normal deviation in
results on the chosen environment as was already observed in Section 7.2.1.

Also note that for some attacks the black-box attack seems to outperform its white-box
attack counterpart, however this is very likely again due to the general variance of the results.
As a matter of fact, all variations between the three victim models are potentially caused by
the simplicity of the environment defined in Section 5.1, as will be discussed in Section 8.

7.2.4 Runtime

As already stated in Section 6.2.5, one definite advantage of adversarial policy attacks over
the other presented attack methods is the fact that after completing their training process,
they require minimal computing time of O(1). Furthermore due to their iterative nature,
iterative attacks, as well as their derivatives SGD and momentum boosted attacks, need to
repeat the computation multiple times per time step, leading to a potentially long runtime of
O(n).

To make profound conclusions, in the following experiments, each attack’s runtime is com-
pared relative to the baseline, therefore taking the model’s runtime into account while also
decreasing the dependency on hardware specifics.

Figure 27a illustrates the mean runtime (relative to the baseline) of each iterative attack
method with respect to the number of iterations n per time step. As expected the mean run-
time increases significantly in n, e.g. the chosen configuration for the previous experiments
(n = 15) extends the baseline’s runtime by a factor 1000. Plain iterative attacks require a
shorter runtime overall since the gradient is only computed once (or not at all, as in the

46 Tobias Hürten

ba
se

lin
e

ad
v

po
lic

y

ad
v

po
lic

y
bo

un
d

on
e

st
ep

 n
ai

ve

ite
ra

tiv
e

na
iv

e

on
e

st
ep

 fg
sm

ite
ra

tiv
e

fg
sm

sg
d

fg
sm

m
om

 fg
sm

on
e

st
ep

 a
dv

 g
ra

d

ite
ra

tiv
e

ad
v

gr
ad

sg
d

ad
v

gr
ad

m
om

 a
dv

 g
ra

d0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

ppo white-box ppo black-box a2c black-box

(a) Mean reward reduction.

ba
se

lin
e

ad
v

po
lic

y

ad
v

po
lic

y
bo

un
d

on
e

st
ep

 n
ai

ve

ite
ra

tiv
e

na
iv

e

on
e

st
ep

 fg
sm

ite
ra

tiv
e

fg
sm

sg
d

fg
sm

m
om

 fg
sm

on
e

st
ep

 a
dv

 g
ra

d

ite
ra

tiv
e

ad
v

gr
ad

sg
d

ad
v

gr
ad

m
om

 a
dv

 g
ra

d0

5

10

15

20

25

m
ea

n
nu

m
 a

tta
ck

s

ppo white-box ppo black-box a2c black-box

(b) Mean number of attacks.

ba
se

lin
e

ad
v

po
lic

y

ad
v

po
lic

y
bo

un
d

on
e

st
ep

 n
ai

ve

ite
ra

tiv
e

na
iv

e

on
e

st
ep

 fg
sm

ite
ra

tiv
e

fg
sm

sg
d

fg
sm

m
om

 fg
sm

on
e

st
ep

 a
dv

 g
ra

d

ite
ra

tiv
e

ad
v

gr
ad

sg
d

ad
v

gr
ad

m
om

 a
dv

 g
ra

d0

50

100

150

200

250

300

m
ea

n
cu

m
 p

er
tu

rb
at

io
n

ppo white-box ppo black-box a2c black-box

(c) Mean cumulative perturbation.

ba
se

lin
e

ad
v

po
lic

y

ad
v

po
lic

y
bo

un
d

on
e

st
ep

 n
ai

ve

ite
ra

tiv
e

na
iv

e

on
e

st
ep

 fg
sm

ite
ra

tiv
e

fg
sm

sg
d

fg
sm

m
om

 fg
sm

on
e

st
ep

 a
dv

 g
ra

d

ite
ra

tiv
e

ad
v

gr
ad

sg
d

ad
v

gr
ad

m
om

 a
dv

 g
ra

d0

5

10

15

20

25
m

ea
n

ep
iso

de
 le

ng
th

ppo white-box ppo black-box a2c black-box

(d) Mean episode length.

Figure 26. Illustration of the experiment stated in section 7.2.3 comparing performance on
the three victim agents. In this case results are estimated over 500 episodes with ϵ = 0.35

and β = 0 (uniform attack).

case of the iterative naive attack), whereas SGD and momentum boosted attacks compute
the gradient of the last sample sadvi−1

in each iteration.

As already stated in Section 7.1, n = 15 seems to be a good trade-off between performance
and runtime, as exemplarily depicted for the naive iterative approach and the momentum
boosted variant of the adversarial gradient method in Figure 27c.

Figure 27d places the previous data in the context of all attacks, hence once again the data
was gathered with a fixed n = 15 for iterative attack methods. Again, as expected iterative-
based methods have the longest runtime relative to the base model. Overall, if runtime is a
concern, adversarial policy attacks seem to deliver the best trade-off between performance
and runtime.

Tobias Hürten 47

0 10 20 30 40 50 60 70
num iterations n

0×

1000×

2000×

3000×

4000×

5000×

m
ea

n
ru

nt
im

e
re

la
tiv

e
to

 b
as

el
in

e

iterative naive
iterative fgsm
sgd fgsm

mom fgsm
iterative adv grad

sgd adv grad
mom adv grad

(a) Relative mean runtime of iterative-based
methods for different numbers of iterations.

0 10 20 30 40 50 60 70
num iterations n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

st
d

ru
nt

im
e

iterative naive
iterative fgsm
sgd fgsm

mom fgsm
iterative adv grad

sgd adv grad
mom adv grad

(b) Relative std runtime of iterative-based
methods for different numbers of iterations.

0 10 20 30 40 50 60 70
num iterations n

0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

iterative naive reward mom adv grad reward

0×

500×

1000×

1500×

2000×

2500×

3000×

3500×
m

ea
n

ru
nt

im
e

re
la

tiv
e

to
 b

as
el

in
e

iterative naive runtime mom adv grad runtime

(c) Relative mean runtime versus mean
reward reduction for different numbers of

iterations.

ba
se

lin
e

on
e

st
ep

 n
ai

ve

ad
v

po
lic

y
bo

un
d

ad
v

po
lic

y

on
e

st
ep

 a
dv

 g
ra

d

on
e

st
ep

 fg
sm

ite
ra

tiv
e

na
iv

e

ite
ra

tiv
e

ad
v

gr
ad

ite
ra

tiv
e

fg
sm

sg
d

ad
v

gr
ad

m
om

 a
dv

 g
ra

d

sg
d

fg
sm

m
om

 fg
sm

0×

250×

500×

750×

1000×

1250×

1500×
m

ea
n

ru
nt

im
e

re
la

tiv
e

to
 b

as
el

in
e

(d) Relative mean runtime of all methods
(n = 15 for iterative-based methods).

Figure 27. Illustration of the experiments stated in section 7.2.4.

8 Conclusion

This thesis examined the potential of adversarial attacks in the context of RL applications
in tactical networks. It extends previous research, while also highlighting some differences
between a set of introduced attack methods.

First and foremost, the experiments in Section 7 prove RL agents, deployed to supervise
tactical networks, to be indeed susceptible to these sophisticated attacks. A malicious adver-
sary can intercept observations and modify them in a way, that significantly reduces the victim
agent’s reward and consequentially manipulate the latter to select - for instance - unstable
connections for packet transmission. Therefore one has to be aware of these observation
based attack vectors when trying to apply RL methods in security relevant fields.

Furthermore Section 7 highlights key differences between attacks with respect to a set of
metrics. Most attack methods seem to effectively impact the victim model’s performance,

48 Tobias Hürten

however more complex methods, such as adversarial policy attacks or gradient-based ap-
proaches, proved to be most potent.

Additionally the use of these adversarial policies significantly reduce the computation time
for sample crafting at runtime at the cost of an extensive training phase before application.

At the same time it is possible to limit the degree of perturbation, that is applied to each
observation and thereby the risk of detection, using more restricting attack strategies (e.g.
strategically timed attacks) and noise constraints or integrating the noise magnitude into an
adversarial policy’s objective function.

Although each presented attack uses information about its called reference model to effec-
tively craft adversarial samples, it was proven, that these attacks can indeed be transferred to
independent victim models as black-box attacks, as long as it can be reasonably assumed, that
the latter solves the same underlying problem in a similar manner as the reference model.
Hence, the required reference model can also be acquired through training by the adversary
itself, therefore reducing the extent of required knowledge to just the environment.

Further research on a more complex network simulation is necessary to further investi-
gate the advantage of momentum boosted attacks compared to SGD methods, as well as
more complex attack approaches, that are currently researched in general, as these were not
realistically applicable, due to the chosen environment’s limitations.

Finally it will be interesting to see these adversarial attack vectors being applied during the
learning phase, to potentially train more robust RL models, as well as investigation done on
different learning approaches and their vulnerability against adversarial samples. Also, this
thesis focuses on the mean cumulative perturbation as metric for detectability, but it would
be intriguing to see tests with actual detectors.

In conclusion, RL methods seem to be an interesting addition to research of tactical net-
works and MANETs in general and will likely benefit the field, once these potential security
risks are sufficiently addressed.

References

[1] S. Kaviani, B. Ryu, E. Ahmed, K. A. Larson, A. Le, A. Yahja, and J. H. Kim, “Robust and
scalable routing with multi-agent deep reinforcement learning for manets,” 2021.

[2] J. F. Loevenich, J. Bode, T. Hürten, L. Liberto, F. Spelter, P. H. Rettore, and R. R. F. Lopes,
“Adversarial attacks against reinforcement learning based tactical networks: A case
study,” in MILCOM 2022-2022 IEEE Military Communications Conference (MILCOM),
pp. 986–992, IEEE, 2022.

[3] A. L. Samuel, “Some studies in machine learning using the game of checkers,” 1959.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning, second edition: An Introduction.
MIT Press, 2018.

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial ex-
amples,” 2014.

Tobias Hürten 49

[6] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Advances in Neural Information
Processing Systems (S. Solla, T. Leen, and K. Müller, eds.), vol. 12, MIT Press, 1999.

[7] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, “Scalable trust-region method for
deep reinforcement learning using kronecker-factored approximation,” 2017.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-
mization algorithms,” 2017.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,
“Intriguing properties of neural networks,” 2014.

[10] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial attacks on
neural network policies,” 2017.

[11] S. Basagni, M. Conti, S. Giordano, and I. Stojmenović, Mobile ad hoc networking,
vol. 461. Wiley Online Library, 2004.

[12] J. Hoebeke, I. Moerman, B. Dhoedt, and P. Demeester, “An overview of mobile ad hoc
networks: applications and challenges,” Journal-Communications Network, vol. 3, no. 3,
pp. 60–66, 2004.

[13] J. F. Loevenich, A. Sergeev, P. H. L. Rettore, and R. R. F. Lopes, “An intelligent model
to quantify the robustness of tactical systems to unplanned link disconnections,” in
2022 18th International Conference on the Design of Reliable Communication Networks
(DRCN), pp. 1–8, 2022.

[14] A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowdhary, “Robust deep rein-
forcement learning with adversarial attacks,” 2017.

[15] M. V. Jambunathan, “Some properties of beta and gamma distributions,” The Annals of
Mathematical Statistics, vol. 25, no. 2, pp. 401–405, 1954.

[16] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks
with momentum,” 2017.

[17] A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, and S. Russell, “Adversarial policies:
Attacking deep reinforcement learning,” 2019.

[18] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun, “Tactics of adver-
sarial attack on deep reinforcement learning agents,” 2017.

50 Tobias Hürten

9 Appendix A

Algorithm 8 Iterative FGSM attack

Require: state s ∈ S, reference model πθ, number of iterations n, noise constraint ϵ, param-
eters of beta distribution α, β

1: a∗ ← argmax πθ(s)
2: aw ← argmin πθ(s)
3: grad← ∇sJ(s, πθ)
4: grad_dir ← ϵ · sign(grad) ▷ e.g. L∞-norm constrain (6.1)
5: sadv ← s
6: for i = 1 to n do
7: ηi ∼ 2 ·B(α, β)− 1
8: sadvi ← s+ s · |ηi| · grad_dir
9: if criterion(sadvi) > criterion(sadv) then ▷ according to section 6.2.2

10: sadv ← sadvi
11: end if
12: end for
13: return sadv

Algorithm 9 Iterative adversarial gradient attack

Require: state s ∈ S, reference model πθ, number of iterations n, noise constraint ϵ, param-
eters of beta distribution α, β

1: a∗ ← argmax πθ(s)
2: aw ← argmin πθ(s)
3: grad← ∇sJ(s, πθ)
4: grad_dir ← ϵ ·

√
d · grad

||grad||2 ▷ e.g. L2-norm constrain (6.1)
5: sadv ← s
6: for i = 1 to n do
7: ηi ∼ 2 ·B(α, β)− 1
8: sadvi ← s+ s · |ηi| · grad_dir
9: if criterion(sadvi) > criterion(sadv) then ▷ according to section 6.2.2

10: sadv ← sadvi
11: end if
12: end for
13: return sadv

Tobias Hürten 51

Algorithm 10 SGD adversarial gradient attack

Require: state s ∈ S, reference model πθ, number of iterations n, noise constraint ϵ, param-
eters of beta distribution α, β

1: sadv ← s
2: for i = 1 to n do
3: grad← ∇sadvJ(sadv, πθ)
4: grad_dir ← ϵ ·

√
d · grad

||grad||2 ▷ e.g. L2-norm constrain (6.1)
5: ηi ∼ 2 ·B(α, β)− 1
6: sadv ← s+ s · |η| · grad_dir
7: end for
8: return sadv

Algorithm 11 Momentum boosted FGSM attack

Require: state s ∈ S, reference model πθ, number of iterations n, noise constraint ϵ, param-
eters of beta distribution α, β

1: sadv ← s
2: grad0 ← 0
3: for i = 1 to n do
4: gradi ← µ · gradi−1 +∇sadvJ(sadv, πθ)
5: grad_dir ← ϵ · sign(grad) ▷ e.g. L∞-norm constrain (6.1)
6: ηi ∼ 2 ·B(α, β)− 1
7: sadv ← s+ s · |η|
8: end for
9: return sadv

52 Tobias Hürten

0 10 20 30 40 50 60 70
num iterations n

50

100

150

200

250

300

m
ea

n
cu

m
 p

er
tu

rb
at

io
n

iterative naive
iterative fgsm
sgd fgsm

mom fgsm
iterative adv grad

sgd adv grad
mom adv grad

(a) Mean cumulative perturbation.

0 10 20 30 40 50 60 70
num iterations n

5

10

15

20

25

30

m
ea

n
ep

iso
de

 le
ng

th

iterative naive
iterative fgsm
sgd fgsm

mom fgsm
iterative adv grad

sgd adv grad
mom adv grad

(b) Mean episode length.

0 10 20 30 40 50 60 70
num iterations n

5

10

15

20

25

30

35

40

45

st
d

cu
m

 p
er

tu
rb

at
io

n

iterative naive
iterative fgsm
sgd fgsm

mom fgsm
iterative adv grad

sgd adv grad
mom adv grad

(c) Std cumulative perturbation.

0 10 20 30 40 50 60 70
num iterations n

2

4

6

8

10

12

14

st
d

nu
m

 a
ct

io
ns

 c
ha

ng
ed

iterative naive
iterative fgsm
sgd fgsm

mom fgsm
iterative adv grad

sgd adv grad
mom adv grad

(d) Std episode length.

Figure 28. Mean cumulative perturbation (a) and episode length (b) for different numbers
of iterations of noise sampling per state st.

Tobias Hürten 53

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

st
d

re
wa

rd

one step naive one step fgsm one step adv grad

(a) Std reward of one-step methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

st
d

re
wa

rd

iterative naive iterative fgsm iterative adv grad

(b) Std reward of iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

st
d

re
wa

rd

sgd fgsm sgd adv grad

(c) Std reward of SGD methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

st
d

re
wa

rd

mom fgsm mom adv grad

(d) Std reward of momentum methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

st
d

re
wa

rd

adv policy adv policy bound

(e) Std reward of adv policy methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

st
d

re
wa

rd

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(f) Std reward (comparison).

Figure 29. Comparison of the standard deviation of the reward reduction for different
attack types. Results are estimated over 50 episodes with varying ϵ.

54 Tobias Hürten

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

one step naive one step fgsm one step adv grad

(a) Mean number of actions changed of
one-step methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

iterative naive iterative fgsm iterative adv grad

(b) Mean number of actions changed of
iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

sgd fgsm sgd adv grad

(c) Mean number of actions changed of SGD
methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30
m

ea
n

nu
m

 a
ct

io
ns

 c
ha

ng
ed

mom fgsm mom adv grad

(d) Mean number of actions changed of
momentum methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

adv policy adv policy bound

(e) Mean number of actions changed of adv
policy methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(f) Mean number of actions changed
(comparison).

Figure 30. Comparison of mean number of actions changed for different attack types.
Results are estimated over 50 episodes with varying ϵ.

Tobias Hürten 55

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

m
ea

n
ep

iso
de

 le
ng

th

one step naive one step fgsm one step adv grad

(a) Mean episode length of one-step
methods.

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

m
ea

n
ep

iso
de

 le
ng

th

iterative naive iterative fgsm iterative adv grad

(b) Mean episode length of iterative
methods.

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

m
ea

n
ep

iso
de

 le
ng

th

sgd fgsm sgd adv grad

(c) Mean episode length of SGD methods.

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30
m

ea
n

ep
iso

de
 le

ng
th

mom fgsm mom adv grad

(d) Mean episode length of momentum
methods.

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

m
ea

n
ep

iso
de

 le
ng

th

adv policy adv policy bound

(e) Mean episode length of adv policy
methods.

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

m
ea

n
ep

iso
de

 le
ng

th

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(f) Mean episode length (comparison).

Figure 31. Comparison of mean episode length for different attack types. Results are
estimated over 50 episodes with varying ϵ.

56 Tobias Hürten

0.0 0.2 0.4 0.6 0.8 1.00×

250×

500×

750×

1000×

1250×

1500×

m
ea

n
ru

nt
im

e
re

la
tiv

e
to

 b
as

el
in

e

one step naive one step fgsm one step adv grad

(a) Mean runtime of one-step methods.

0.0 0.2 0.4 0.6 0.8 1.00×

250×

500×

750×

1000×

1250×

1500×

m
ea

n
ru

nt
im

e
re

la
tiv

e
to

 b
as

el
in

e

iterative naive iterative fgsm iterative adv grad

(b) Mean runtime of iterative methods.

0.0 0.2 0.4 0.6 0.8 1.00×

250×

500×

750×

1000×

1250×

1500×

m
ea

n
ru

nt
im

e
re

la
tiv

e
to

 b
as

el
in

e

sgd fgsm sgd adv grad

(c) Mean runtime of SGD methods.

0.0 0.2 0.4 0.6 0.8 1.00×

250×

500×

750×

1000×

1250×

1500×

m
ea

n
ru

nt
im

e
re

la
tiv

e
to

 b
as

el
in

e

mom fgsm mom adv grad

(d) Mean runtime of momentum methods.

0.0 0.2 0.4 0.6 0.8 1.00×

250×

500×

750×

1000×

1250×

1500×

m
ea

n
ru

nt
im

e
re

la
tiv

e
to

 b
as

el
in

e

adv policy adv policy bound

(e) Mean runtime of adv policy methods.

0.0 0.2 0.4 0.6 0.8 1.0
0×

250×

500×

750×

1000×

1250×

1500×

m
ea

n
ru

nt
im

e
re

la
tiv

e
to

 b
as

el
in

e

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(f) Mean runtime (comparison).

Figure 32. Comparison of mean runtime for different attack types. Results are estimated
over 50 episodes with varying ϵ.

Tobias Hürten 57

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

iterative naive iterative fgsm iterative adv grad

(a) Mean reward of iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

st
d

re
wa

rd

iterative naive iterative fgsm iterative adv grad

(b) Std reward of iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0

2.5

3.0

3.5

4.0

4.5

m
ea

n
ep

iso
de

 le
ng

th

iterative naive iterative fgsm iterative adv grad

(c) Mean episode length of iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

7

st
d

ep
iso

de
 le

ng
th

iterative naive iterative fgsm iterative adv grad

(d) Std episode length of iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

m
ea

n
cu

m
 p

er
tu

rb
at

io
n

iterative naive iterative fgsm iterative adv grad

(e) Mean cumulative perturbation of
iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

st
d

cu
m

 p
er

tu
rb

at
io

n

iterative naive iterative fgsm iterative adv grad

(f) Std cumulative perturbation of iterative
methods.

Figure 33. Performance comparison of iterative attacks when selecting the sample based on
the probability of the best action a∗. Results are estimated over 50 episodes with varying ϵ.

58 Tobias Hürten

0.0 0.2 0.4 0.6 0.8 1.0
0%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

iterative naive iterative fgsm iterative adv grad

(a) Mean reward of iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

st
d

re
wa

rd

iterative naive iterative fgsm iterative adv grad

(b) Std reward of iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0

2.5

3.0

3.5

4.0

4.5

m
ea

n
ep

iso
de

 le
ng

th

iterative naive iterative fgsm iterative adv grad

(c) Mean episode length of iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

7

st
d

ep
iso

de
 le

ng
th

iterative naive iterative fgsm iterative adv grad

(d) Std episode length of iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

m
ea

n
cu

m
 p

er
tu

rb
at

io
n

iterative naive iterative fgsm iterative adv grad

(e) Mean cumulative perturbation of
iterative methods.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

st
d

cu
m

 p
er

tu
rb

at
io

n

iterative naive iterative fgsm iterative adv grad

(f) Std cumulative perturbation of iterative
methods.

Figure 34. Performance comparison of iterative attacks when selecting the sample based on
the probability of the worst action aw. Results are estimated over 50 episodes with varying ϵ.

Tobias Hürten 59

0.0 0.2 0.4 0.6 0.8 1.00%

50%

100%

150%

200%

250%

300%

m
ea

n
re

wa
rd

 re
du

ct
io

n

mom fgsm mom adv grad

(a) Mean reward reduction.

0.0 0.2 0.4 0.6 0.8 1.0

30

40

50

60

70

80

90

st
d

re
wa

rd

mom fgsm mom adv grad

(b) Standard deviation reward.

0.0 0.2 0.4 0.6 0.8 1.0

15

20

25

30

m
ea

n
ep

iso
de

 le
ng

th

mom fgsm mom adv grad

(c) Mean episode length.

0.0 0.2 0.4 0.6 0.8 1.0

6

8

10

12

14

st
d

ep
iso

de
 le

ng
th

mom fgsm mom adv grad

(d) Standard deviation episode length.

0.0 0.2 0.4 0.6 0.8 1.0

15

20

25

30

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

mom fgsm mom adv grad

(e) Mean number of actions changed.

0.0 0.2 0.4 0.6 0.8 1.0

6

8

10

12

14

st
d

nu
m

 a
ct

io
ns

 c
ha

ng
ed

mom fgsm mom adv grad

(f) Std number of actions changed.

Figure 35. Performance of the two momentum boosted attacks with different µ ∈ [0, 1].

60 Tobias Hürten

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

m
ea

n
ep

iso
de

 le
ng

th

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(a) Mean episode length L∞

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

m
ea

n
ep

iso
de

 le
ng

th

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(b) Mean episode length L2.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(c) Mean number of actions changed L∞.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(d) Mean number of actions changed L2.

0.0 0.2 0.4 0.6 0.8 1.0
0×

250×

500×

750×

1000×

1250×

1500×

m
ea

n
ru

nt
im

e
re

la
tiv

e
to

 b
as

el
in

e

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(e) Mean relative runtime L∞.

0.0 0.2 0.4 0.6 0.8 1.0
0×

250×

500×

750×

1000×

1250×

1500×

m
ea

n
ru

nt
im

e
re

la
tiv

e
to

 b
as

el
in

e

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(f) Mean relative runtime L2.

Figure 36. Each attack type’s performance with respect to the L∞-norm and L2-norm
constrained noise.

Tobias Hürten 61

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

m
ea

n
ep

iso
de

 le
ng

th

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(a) Mean episode length uniform noise.

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

m
ea

n
ep

iso
de

 le
ng

th

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(b) Mean episode length non-uniform noise.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

m
ea

n
cu

m
 p

er
tu

rb
at

io
n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(c) Mean cumulative perturbation uniform
noise.

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300
m

ea
n

cu
m

 p
er

tu
rb

at
io

n

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(d) Mean cumulative perturbation
non-uniform noise.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(e) Mean number actions changed uniform
noise.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

adv policy
adv policy bound

one step adv grad
iterative adv grad

sgd adv grad
mom adv grad

(f) Mean number actions changed
non-uniform noise.

Figure 37. Each attack type’s performance with respect to whether noise was sampled
uniformly for all parameter of the observation space or specific to each.

62 Tobias Hürten

0.0 0.2 0.4 0.6 0.8 1.0
3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

st
d

cu
m

 p
er

tu
rb

at
io

n

adv policy bound

(a) Std number of cumulative perturbation.

0.0 0.2 0.4 0.6 0.8 1.0

65

70

75

80

85

90

95

st
d

re
wa

rd

adv policy bound

(b) Std number of reward reduction.

0.0 0.2 0.4 0.6 0.8 1.0

14

16

18

20

22

24

m
ea

n
ep

iso
de

 le
ng

th

adv policy bound

(c) Mean episode length.

0.0 0.2 0.4 0.6 0.8 1.0

7

8

9

10

11

12

13

st
d

ep
iso

de
 le

ng
th

adv policy bound

(d) Std episode length.

0.0 0.2 0.4 0.6 0.8 1.0

14

16

18

20

22

m
ea

n
nu

m
 a

ct
io

ns
 c

ha
ng

ed

adv policy bound

(e) Mean number of actions changed.

0.0 0.2 0.4 0.6 0.8 1.0

7

8

9

10

11

12

st
d

nu
m

 a
ct

io
ns

 c
ha

ng
ed

adv policy bound

(f) Std number of actions changed.

Figure 38. Performance of bound adversarial policy attack for an increasing ρ. ϵ is fixed to
0.35.

Tobias Hürten 63

ba
se

lin
e

ad
v

po
lic

y

ad
v

po
lic

y
bo

un
d

on
e

st
ep

 n
ai

ve

ite
ra

tiv
e

na
iv

e

on
e

st
ep

 fg
sm

ite
ra

tiv
e

fg
sm

sg
d

fg
sm

m
om

 fg
sm

on
e

st
ep

 a
dv

 g
ra

d

ite
ra

tiv
e

ad
v

gr
ad

sg
d

ad
v

gr
ad

m
om

 a
dv

 g
ra

d0

20

40

60

80

st
d

re
wa

rd

ppo white-box ppo black-box a2c black-box

(a) Std reward reduction.

ba
se

lin
e

ad
v

po
lic

y

ad
v

po
lic

y
bo

un
d

on
e

st
ep

 n
ai

ve

ite
ra

tiv
e

na
iv

e

on
e

st
ep

 fg
sm

ite
ra

tiv
e

fg
sm

sg
d

fg
sm

m
om

 fg
sm

on
e

st
ep

 a
dv

 g
ra

d

ite
ra

tiv
e

ad
v

gr
ad

sg
d

ad
v

gr
ad

m
om

 a
dv

 g
ra

d0

2

4

6

8

10

12

st
d

nu
m

 a
tta

ck
s

ppo white-box ppo black-box a2c black-box

(b) Std number of attacks.

ba
se

lin
e

ad
v

po
lic

y

ad
v

po
lic

y
bo

un
d

on
e

st
ep

 n
ai

ve

ite
ra

tiv
e

na
iv

e

on
e

st
ep

 fg
sm

ite
ra

tiv
e

fg
sm

sg
d

fg
sm

m
om

 fg
sm

on
e

st
ep

 a
dv

 g
ra

d

ite
ra

tiv
e

ad
v

gr
ad

sg
d

ad
v

gr
ad

m
om

 a
dv

 g
ra

d0

2

4

6

8

10

12

st
d

nu
m

 a
ct

io
ns

 c
ha

ng
ed

ppo white-box ppo black-box a2c black-box

(c) Std number of actions changed.

ba
se

lin
e

ad
v

po
lic

y

ad
v

po
lic

y
bo

un
d

on
e

st
ep

 n
ai

ve

ite
ra

tiv
e

na
iv

e

on
e

st
ep

 fg
sm

ite
ra

tiv
e

fg
sm

sg
d

fg
sm

m
om

 fg
sm

on
e

st
ep

 a
dv

 g
ra

d

ite
ra

tiv
e

ad
v

gr
ad

sg
d

ad
v

gr
ad

m
om

 a
dv

 g
ra

d0

2

4

6

8

10

12

st
d

ep
iso

de
 le

ng
th

ppo white-box ppo black-box a2c black-box

(d) Std episode length.

Figure 39. Standard deviations for transferability experiment. In this case results are
estimated over 500 episodes with ϵ = 0.35 and β = 0 (uniform attack).

	Abstract
	Acknowledgements
	Introduction
	Background
	Reinforcement Learning
	Terminology
	Finite Markov Decision Processes
	Returns and Episodes
	Policies and Value Functions
	Monte Carlo methods
	Temporal Difference Learning
	Policy Gradient methods
	Actor-Critic methods

	Adversarial Attacks
	Fast Gradient Sign Method
	Adversarial Attacks on Neural Network Policies

	Mobile Ad hoc Networks

	Problem
	The Environment
	Restrictions

	Methodology
	Noise constraints
	Attack Methods
	One-step methods
	Iterative methods
	Stochastic Gradient Descent methods
	Momentum boosted adversarial attacks
	Adversarial policy attacks

	Attack Strategies

	Results
	Configuration
	Evaluation
	Effectiveness
	Detectability
	Transferability
	Runtime

	Conclusion
	Appendix A

